




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示,则该几何体的体积是( )ABCD2费马素数是法国大数学家费马命名的,形如的素数(如:)为
2、费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()ABCD3设复数满足(为虚数单位),则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限4阅读如图的程序框图,运行相应的程序,则输出的的值为( )ABCD5已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点给出以下判断:以为直径的圆与抛物线准线相离;直线与直线的斜率乘积为;设过点,的圆的圆心坐标为,半径为,则其中,所有正确判断的序号是( )ABCD6设复数满足,在复平面内对应的点为,则不可能为( )ABCD7若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为
3、( )A85B84C57D568设集合Ay|y2x1,xR,Bx|2x3,xZ,则AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,39设,则( )ABCD10已知函数若存在实数,且,使得,则实数a的取值范围为( )ABCD11已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是( )A29B30C31D3212已知集合(),若集合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知等比数列满足公比,为其前项和,构成等差数列,则_14甲、乙、丙、丁四人参加冬季滑雪比赛
4、,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“”表示猜测某人获奖,“”表示猜测某人未获奖,而“”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_.甲获奖乙获奖丙获奖丁获奖甲的猜测乙的猜测丙的猜测丁的猜测15已知为等差数列,为其前n项和,若,则_.16设为定义在上的偶函数,当时,(为常数),若,则实数的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论函数单调性;(2)当时,求证:.18(12分)已知函数(mR)的导函数为(1)若函数存在极值,求m的取值范围;(2)设函数(其中e为自然对
5、数的底数),对任意mR,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合19(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.20(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.21(12分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.22(10分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1(1)求椭圆的方程;(1)若过点的直线与
6、椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。2B【解析】基本事件总数,能表示为两个不同费马素数的和只有,共有个,根据古典概型求出概率【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个
7、不同费马素数的和的只有,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题3A【解析】由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【详解】由得:,对应的点的坐标为,位于第一象限.故选:.【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.4C【解析】根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,第1次循环,满足判断条件;第2次循环,满足判断条件;第3次循环,满足判断条件; 可得的值满足以3项为
8、周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.5D【解析】对于,利用抛物线的定义,利用可判断;对于,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于,将代入抛物线的方程可得,从而,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然
9、,三点不共线,则所以正确由题意可设直线的方程为,代入抛物线的方程,有设点,的坐标分别为,则,所以则直线与直线的斜率乘积为所以正确将代入抛物线的方程可得,从而,根据抛物线的对称性可知,两点关于轴对称,所以过点,的圆的圆心在轴上由上,有,则所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以于是,代入,得,所以所以正确故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.6D【解析】依题意,设,由,得,再一一验证.【详解】设,因为,所以,经验证不满足,故选:D.【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础
10、题.7A【解析】先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.8C【解析】先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可【详解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,1,2,3,AB0,1,2,3,故选:C【点睛】本题主要考查集合的交集运算,属于基础题9D【解析】结合指数函数及对数函数的单调性,可判断出,即可选出答案.【详解】由,即,又,即,即,所以.故选:D.【点睛】本题考
11、查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.10D【解析】首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2)(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.11B【解析】设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即
12、可得到所求【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5=1故选C【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题12C【解析】根据题目中的基底定义求解.【详解】因为,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。130【解析】利用等差中项以及等比数列的前项和公式即可求解.【详解】由,是等差数列可知因为,所以,故答案为:0【点睛
13、】本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.14乙、丁【解析】本题首先可根据题意中的“四个人中有且只有两个人的猜测是正确的”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所猜测的结果是否冲突,最后即可得出结果.【详解】从表中可知,若甲猜测正确,则乙,丙,丁猜测错误,与题意不符,故甲猜测错误;若乙猜测正确,则依题意丙猜测无法确定正误,丁猜测错误;若丙猜测正确,则丁猜测错误;综上只有乙,丙猜测不矛盾,依题意乙,丙猜测是正确的,从而得出乙,丁获奖.所以本题答案为乙、丁.【点睛】本题是一个简单的合情推理题,能否根据“四个人中有且只有两个人的猜测是正确的”将题目所
14、给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题.151【解析】试题分析:因为是等差数列,所以,即,又,所以,所以故答案为1【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.161【解析】根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【详解】因为为定义在上的偶函数,所以,又因为当时,所以,所以实数的值为1.故答案为:1【点睛】本题主要考查函数奇偶性的应用,还考查了运算求解的能力
15、,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)见解析【解析】(1)根据的导函数进行分类讨论单调性(2)欲证,只需证,构造函数,证明,这时需研究的单调性,求其最大值即可【详解】解:(1)的定义域为, 当时,由得,由,得,所以在上单调递增,在单调递减;当时,由得,由,得,或,所以在上单调递增,在单调递减,在单调递增;当时,所以在上单调递增;当时,由,得,由,得,或,所以在上单调递增,在单调递减,在单调递增.(2)当时,欲证,只需证,令,则,因存在,使得成立,即有,使得成立.当变化时,的变化如下:0单调递增单调递减所以.因为,所以,所以.即,所以当
16、时,成立.【点睛】考查求函数单调性的方法和用函数的最值证明不等式的方法,难题.18(1)(2)1,2【解析】(1)求解导数,表示出,再利用的导数可求m的取值范围;(2)表示出,结合二次函数知识求出的最小值,再结合导数及基本不等式求出的最值,从而可求正整数k的取值集合【详解】(1)因为,所以,所以,则,由题意可知,解得;(2)由(1)可知,所以因为整理得,设,则,所以单调递增,又因为, 所以存在,使得,设,是关于开口向上的二次函数,则,设,则,令,则,所以单调递增,因为,所以存在,使得,即,当时,当时,所以在上单调递减,在上单调递增,所以,因为,所以,又由题意可知,所以,解得,所以正整数k的取值
17、集合为1,2【点睛】本题主要考查导数的应用,利用导数研究极值问题一般转化为导数的零点问题,恒成立问题要逐步消去参数,转化为最值问题求解,适当构造函数是转化的关键,本题综合性较强,难度较大,侧重考查数学抽象和逻辑推理的核心素养.19 (1);(2)是,【解析】(1)根据及可得,再将点代入椭圆的方程与联立解出,即可求出椭圆的方程; (2) 可设所在直线的方程为,将直线的方程与椭圆的方程联立,用根与系数的关系求出,然后将直线、的斜率、分别用表示,利用可求出,从而可确定点恒在一条直线上,结合图形即可求出的面积【详解】(1)因为椭圆的离心率为,所以,即,又,所以,因为点在椭圆上,所以,由解得,所以椭圆C
18、的方程为(1)可知,可设所在直线的方程为,由,得,设,则,设直线、的斜率分别为、,因为三点共线,所以,即,所以,又,因为直线、的斜率成等差数列,所以,即,化简得,即点恒在一条直线上,又因为直线方程为,且,所以是定值.【点睛】本题主要考查椭圆的方程,直线与椭圆的位置关系及椭圆中的定值问题,属于中档题20(1);(2)证明见解析【解析】(1)利用零点分段法将表示为分段函数的形式,由此解不等式求得不等式的解集.(2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.【详解】(1)解:,由,解得,故.(2)证明:因为,所以,所以,所以.【点睛】本小题主要考查绝对值不等式的解法,考查不等式的证明,属于基础题.21(1)见解析;(2)【解析】(1)要证明PC面ADE,由已知可得ADPC,只需满足即可,从而得到点E为中点;(2)求出面ADE的法向量,面PAE的法向量,利用空间向量的数量积,求解二面角PAED的余弦值【详解】(1)法一:要证明PC面ADE,易知AD面PDC,即得ADPC,故只需即可,所以由,即存在点E为PC中点. 法二:建立如图所示的空间直角坐标系DXYZ, 由题意知PDCD1,设, ,由,得,即存在点E为PC中点.(2)由(1)知, ,设面ADE的法向量为,面PAE的法向量为由的法向量为得,得,同理求得 所以,故所求二面角PAED的余弦值为.【点睛】本题考查二面角的平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程建筑劳务分包协议范本
- 合同签订的法律依据解析3篇
- 合同条款修改协议3篇
- 关于调解协议书范文集合3篇
- 住宅小区土方供应3篇
- 弱电监控系统建设项目招标3篇
- 空调器个性化定制服务考核试卷
- 木材标准化尺寸与加工适应性考核试卷
- 竹材采运企业社会责任与公益事业考核试卷
- 美容仪器产品的市场潜力评估与分析考核试卷
- 啤酒采购合同协议书模板
- 中医把脉入门培训课件
- 高血糖症的急救与护理
- 成人失禁性皮炎的预防与护理
- 技术信息收集与分析方法考核试卷
- 小学2025年国防教育课程开发计划
- 2025届安徽省示范高中皖北协作区高三下学期一模考试英语试题(原卷版+解析版)
- 防溺水家长测试题及答案
- 义务教育数学课程标准(2024年版)
- 三年级下册面积单位换算练习100道及答案
- 住宅项目开盘前工作倒排表
评论
0/150
提交评论