2021-2022学年广西壮族自治区崇左市达标名校中考五模数学试题含解析_第1页
2021-2022学年广西壮族自治区崇左市达标名校中考五模数学试题含解析_第2页
2021-2022学年广西壮族自治区崇左市达标名校中考五模数学试题含解析_第3页
2021-2022学年广西壮族自治区崇左市达标名校中考五模数学试题含解析_第4页
2021-2022学年广西壮族自治区崇左市达标名校中考五模数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地已知A,C两地间的距离为110千米,B,C两地间的距离为100千米甲骑自行车的平均速度比乙快2千米/时结果两人同时

2、到达C地求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时由题意列出方程其中正确的是()ABCD2如图,ABCD,FEDB,垂足为E,150,则2的度数是( )A60B50C40D303如图是某几何体的三视图,则该几何体的全面积等于()A112B136C124D844如图,O的半径OD弦AB于点C,连接AO并延长交O于点E,连接EC,若AB=8,CD=2,则cosECB为()ABCD5下列因式分解正确的是( )Ax2+9=(x+3)2Ba2+2a+4=(a+2)2Ca3-4a2=a2(a-4)D1-4x2=(1+4x)(1-4x)6已知A、B两地之间铁路长为450千米,动车比火

3、车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()ABCD7如图,在正方形ABCD中,AB,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是()ABCD8若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )A916B34C43D349一组数据3、2、1、2、2的众数,中位数,方差分别是( )A2,1,0.4B2,2,0.4C3,1,2D2,1,0.210如图,ABC中,BC4,P与ABC的边或边的延长线相切若P半径为2,ABC的面积为

4、5,则ABC的周长为( )A8B10C13D14二、填空题(本大题共6个小题,每小题3分,共18分)11如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG、CF下列结论:ABGAFG;BG=GC;AGCF;SFGC=1其中正确结论的是_12亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_.”13股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的

5、10%后,便不能再跌,叫做跌停若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_14计算:2(ab)3b_15某物流仓储公司用如图A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为_16把抛物线y=x22x+3沿x轴向右平移2个单位,得到的抛物线解析式为 三、解答题(共8题,共72分)17(8分)如图,点P是O外一点,请你用尺规画出一条直线PA,使得其与O相切于点A,(不写作法,保留作图痕

6、迹)18(8分)解不等式组:19(8分)如图,在四边形ABCD中,ABCD90,CEAD于点E(1)求证:AECE;(2)若tanD3,求AB的长20(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取

7、的两人恰好都是男生的概率21(8分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”(1)在点C1(2,3+2),点C2(0,2),点C3(3+,)中,线段AB的“等长点”是点_;(2)若点D(m,n)是线段AB的“等长点”,且DAB=60,求点D的坐标;(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围22(10分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元今年的总收

8、入和总支出计划各是多少万元?23(12分)如图,AB是O的直径,BAC=90,四边形EBOC是平行四边形,EB交O于点D,连接CD并延长交AB的延长线于点F(1)求证:CF是O的切线;(2)若F=30,EB=6,求图中阴影部分的面积(结果保留根号和)24如图,AB是O的直径,点E是上的一点,DBC=BED(1)求证:BC是O的切线;(2)已知AD=3,CD=2,求BC的长参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量

9、关系可列出方程即可解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A2、C【解析】试题分析:FEDB,DEF=90,1=50,D=9050=40,ABCD,2=D=40故选C考点:平行线的性质3、B【解析】试题解析:该几何体是三棱柱.如图:由勾股定理 全面积为: 故该几何体的全面积等于1故选B.4、D【解析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度利用锐角三角函数的定义即可求出答案【详解】解:连接EB,由圆周角定理可知:B=90,设O的半径为r,由垂径定理可知:AC=BC=4,CD=2,OC=r-2,由勾股定理可知:

10、r2=(r-2)2+42,r=5,BCE中,由勾股定理可知:CE=2,cosECB=,故选D【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型5、C【解析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(12x)故选C,考点:因式分解【详解】请在此输入详解!6、D【解析】解:设动车速度为每小时x千米,则可列方程为:=故选D7、B【解析】在正方形ABCD中, AB=,AC4,ADDC,DAPDCA45o,当点Q在AD上时,PAPQ,DP=AP=x,S ;当点Q在DC上时,PCPQCP4x,S;所以该函数图象前半部分是抛物线开口向上,后半部

11、分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况8、D【解析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为ykx,把点(3,2a)与点(8a,3)代入得出方程组2a=-3k-3=8ak ,求出方程组的解即可【详解】解:设一次函数的解析式为:ykx,把点(3,2a)与点(8a,3)代入得出方程组2a=-3k-3=8ak ,由得:k=-23a,把代入得:-3=8a-23a ,解得:a=34.故选:D.【点睛】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力9、B【解析】试题

12、解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为(3+2+1+2+2)5=2,方差为 (3-2)2+3(2-2)2+(1-2)2=0.1,即中位数是2,众数是2,方差为0.1故选B10、C【解析】根据三角形的面积公式以及切线长定理即可求出答案【详解】连接PE、PF、PG,AP,由题意可知:PECPFAPGA90,SPBCBCPE424,由切线长定理可知:SPFC+SPBGSPBC4,S四边形AFPGSABC+SPFC+SPBG+SPBC5+4+413,由切线长定理可知:SAPGS四边形AFPG,AGPG,AG,由切线长定理可知:CECF,

13、BEBG,ABC的周长为AC+AB+CE+BEAC+AB+CF+BGAF+AG2AG13,故选C【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据翻折变换的性质和正方形的性质可证RtABGRtAFG;在直角ECG中,根据勾股定理可证BG=GC;通过证明AGB=AGF=GFC=GCF,由平行线的判定可得AGCF;由于SFGC=SGCE-SFEC,求得面积比较即可【详解】正确理由:AB=AD=AF,AG=AG,B=AFG=90,RtABGRtAFG(HL);正确理由:EF=DE=CD=2,设

14、BG=FG=x,则CG=6-x在直角ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1BG=1=6-1=GC;正确理由:CG=BG,BG=GF,CG=GF,FGC是等腰三角形,GFC=GCF又RtABGRtAFG;AGB=AGF,AGB+AGF=2AGB=180-FGC=GFC+GCF=2GFC=2GCF,AGB=AGF=GFC=GCF,AGCF;错误理由:SGCE=GCCE=14=6GF=1,EF=2,GFC和FCE等高,SGFC:SFCE=1:2,SGFC=6=1故不正确正确的个数有1个: .故答案为【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形

15、的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度12、1【解析】本题主要考查了三角形的内角和定理.解:根据三角形的内角和可知填:113、.【解析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可【详解】设这两天此股票股价的平均增长率为x,由题意得(110%)(1+x)21故答案为:(110%)(1+x)21【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的

16、数量关系为14、2a+b【解析】先去括号,再合并同类项即可得出答案【详解】原式=2a-2b+3b=2a+b故答案为:2a+b15、 【解析】设B型机器人每小时搬运xkg物品,则A型机器人每小时搬运(x+20)kg物品,根据“A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等”可列方程【详解】设B型机器人每小时搬运xkg物品,则A型机器人每小时搬运(x+20)kg物品,根据题意可得,故答案为【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x的分式方程本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程是关键16、y=(x3)2+2【解

17、析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式【详解】解:y=x22x+3=(x1)2+2,其顶点坐标为(1,2)向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x3)2+2,故答案为:y=(x3)2+2.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减三、解答题(共8题,共72分)17、答案见解析【解析】连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作K交O于点A,A,作直线PA,PA,直线PA,PA即为所求【详解】解:连接OP,作线段OP的垂直平分线MN交OP

18、于点K,以点K为圆心OK为半径作K交O于点A,A,作直线PA,PA,直线PA,PA即为所求【点睛】本题考查作图复杂作图,解题的关键是灵活运用所学知识解决问题18、4x1【解析】先求出各不等式的【详解】解不等式x12,得:x1,解不等式2x+1x1,得:x4,则不等式组的解集为4x1【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键19、(1)见解析;(2)AB4【解析】(1)过点B作BFCE于F,根据同角的余角相等求出BCF=D,再利用“角角边”证明BCF和CDE全等,根据全等三角形对应边相等可得

19、BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长【详解】(1)证明:过点B作BHCE于H,如图1CEAD,BHCCED90,1D90BCD90,1290,2D又BCCDBHCCED(AAS)BHCEBHCE,CEAD,A90,四边形ABHE是矩形,AEBHAECE(2)四边形ABHE是矩形,ABHE在RtCED中,设DEx,CE3x,x2DE2,CE3CHDE2ABHE324【点睛】本题考查了全等三角形的判定与性质,矩形的判定与

20、性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键20、(1)50;(2)16;(3)56(4)见解析【解析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解【详解】(1)1020%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.

21、图形统计图补充完整如下图所示:(3)700=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图21、(1)C1,C3;(2)D(,0)或D(,3);(3)k 【解析】(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直

22、线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论【详解】(1)A(0,3),B(,0),AB=2,点C1(2,3+2),AC1=2,AC1=AB,C1是线段AB的“等长点”,点C2(0,2),AC2=5,BC2=,AC2AB,BC2AB,C2不是线段AB的“等长点”,点C3(3+,),BC3=2,BC3=AB,C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在RtAOB中,OA=3,OB=,AB=2,tanOAB=,OAB=30,当点D在y轴左侧时,DAB=60,DAO=DABBAO=30,点D(m,n)是线段AB的“等长点”,AD=AB,D(,0),

23、m=,n=0,当点D在y轴右侧时,DAB=60,DAO=BAO+DAB=90,n=3,点D(m,n)是线段AB的“等长点”,AD=AB=2,m=2;D(,3)(3)如图2,直线y=kx+3k=k(x+3),直线y=kx+3k恒过一点P(3,0),在RtAOP中,OA=3,OP=3,APO=30,PAO=60,BAP=90,当PF与B相切时交y轴于F,PA切B于A,点F就是直线y=kx+3k与B的切点,F(0,3),3k=3,k=,当直线y=kx+3k与A相切时交y轴于G切点为E,AEG=OPG=90,AEGPOG,=,解得:k=或k=(舍去)直线y=kx+3k上至少存在一个线段AB的“等长点”,k,【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点22、今年的总收入为220万元,总支出为1万元【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设去年的总收入为x万元,总支出为y万元根据题意,得,解这个方程组,得,(1+10%)x=22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论