2021-2022学年江苏省扬州市部分区、县达标名校毕业升学考试模拟卷数学卷含解析_第1页
2021-2022学年江苏省扬州市部分区、县达标名校毕业升学考试模拟卷数学卷含解析_第2页
2021-2022学年江苏省扬州市部分区、县达标名校毕业升学考试模拟卷数学卷含解析_第3页
2021-2022学年江苏省扬州市部分区、县达标名校毕业升学考试模拟卷数学卷含解析_第4页
2021-2022学年江苏省扬州市部分区、县达标名校毕业升学考试模拟卷数学卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EB

2、ED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是()ABCD2港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A55103B5.5104C5.5105D0.551053七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大4估计的值在( )A2和3之间B3和4之间C4和5之间D

3、5和6之间5估计2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和46方程x(x2)x20的两个根为( )A,B,C ,D, 7如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()ABC1D8抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x21012y04664从上表可知,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在对称轴左侧部分是上升的9在RtABC中,C=90,如果AC=2,cosA=,那么A

4、B的长是()A3BCD10如图,把一块含有45角的直角三角板的两个顶点放在直尺的对边上如果1=20,那么2的度数是( )A30B25C20D1511广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A3.65103B3.65104C3.65105D3.6510612已知3x+y6,则xy的最大值为()A2B3C4D6二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,已知函数y3x+b和yax3的图象交于点P(2,5),则根据图象可得不等式3x+bax3的解集是_14_15如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将AB

5、E沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_16因式分解:a3a=_17钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为_18如图,平面直角坐标系中,矩形OABC的顶点A(6,0),C(0,2)将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角ACB=60,支架AF的长为2.50米,篮板顶端

6、F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角FHE=45,求篮筐D到地面的距离(精确到0.01米参考数据:1.73,1.41)20(6分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,ABBD,BAD18,C在BD上,BC0.5m根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度小刚和小亮谁说得对?请你判断并计算出正确的限制高度(结果精确到0.1m,参考数据:sin180.31,cos180.95,tan180

7、.325)21(6分)计算:(1)0+|1|+(1)122(8分)在平面直角坐标系中,抛物线y(xh)2+k的对称轴是直线x1若抛物线与x轴交于原点,求k的值;当1x0时,抛物线与x轴有且只有一个公共点,求k的取值范围23(8分)如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得SPDE=SABC?若存在,请求出点P的坐标;若不存在,请说明理由24(10分)在A

8、BC中,已知AB=AC,BAC=90,E为边AC上一点,连接BE(1)如图1,若ABE=15,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG25(10分)如图,AB为半圆O的直径,AC是O的一条弦,D为的中点,作DEAC,交AB的延长线于点F,连接DA求证:EF为半圆O的切线;若DADF6,求阴影区域的面积(结果保留根号和)26(12分)在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F(1)求证:A

9、EFDEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积27(12分)解方程:3x22x21参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】首先利用已知条件根据边角边可以证明APDAEB;由可得BEP=90,故BE不垂直于AE过点B作BFAE延长线于F,由得AEB=135所以EFB=45,所以EFB是等腰Rt,故B到直线AE距离为BF=,故是错误的;利用全等三角形的性质和对顶角相等即可判定说法正确;由APDAEB,可知SAPD+SAPB=SAEB+SAPB,然后利用已知条件计算

10、即可判定;连接BD,根据三角形的面积公式得到SBPD=PDBE=,所以SABD=SAPD+SAPB+SBPD=2+,由此即可判定【详解】由边角边定理易知APDAEB,故正确;由APDAEB得,AEP=APE=45,从而APD=AEB=135,所以BEP=90,过B作BFAE,交AE的延长线于F,则BF的长是点B到直线AE的距离,在AEP中,由勾股定理得PE=,在BEP中,PB= ,PE=,由勾股定理得:BE=,PAE=PEB=EFB=90,AE=AP,AEP=45,BEF=180-45-90=45,EBF=45,EF=BF,在EFB中,由勾股定理得:EF=BF=,故是错误的;因为APDAEB,

11、所以ADP=ABE,而对顶角相等,所以是正确的; 由APDAEB,PD=BE=,可知SAPD+SAPB=SAEB+SAPB=SAEP+SBEP=+,因此是错误的;连接BD,则SBPD=PDBE= ,所以SABD=SAPD+SAPB+SBPD=2+,所以S正方形ABCD=2SABD=4+ 综上可知,正确的有故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题2、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】55000是5位整数,小数点向左

12、移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,所以,55000用科学记数法表示为5.5104,故选B.【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的

13、定义和计算公式是解题的关键4、D【解析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:,故选择D.【点睛】本题考查了二次根式的相关定义.5、D【解析】先估算出的大致范围,然后再计算出2的大小,从而得到问题的答案【详解】253231,51原式=22=2,322故选D【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键6、C【解析】根据因式分解法,可得答案【详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x1=-1,x2=2,故选:C【点

14、睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键7、D【解析】过F作FHAE于H,根据矩形的性质得到AB=CD,AB/CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相 似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【详解】解:如图:解:过F作FHAE于H,四边形ABCD是矩形,AB=CD,ABCD,AE/CF, 四边形AECF是平行四边形,AF=CE,DE=BF,AF=3-DE,AE=,FHA=D=DAF=,AFH+HAF=DAE+FAH=90, DAE=AFH,ADEAFH,AE=AF,DE=,故选D.【点睛】本题主要考查平行四边形的性

15、质及三角形相似,做合适的辅助线是解本题的关键.8、C【解析】当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C9、A【解析】根据锐角三角函数的性质,可知cosA=,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.10、B【解析】根据题意可知1+2+45=90

16、,2=90145=25,11、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将365000这个数用科学记数法表示为3.651故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12、B【解析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值【详解】解:1x+y=6,y=

17、-1x+6,xy=-1x2+6x=-1(x-1)2+1(x-1)20,-1(x-1)2+11,即xy的最大值为1故选B【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值二、填空题:(本大题共6个小题,每小题4分,共24分)13、x1【解析】根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式3x+bax-3的解集【详解】解:函数y=3x+b和y=ax-3的图象交于点P(-1,-5),不等式3x+bax-3的解集是x-1,故答案为:x-1【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.14、【解析】

18、根据去括号法则和合并同类二次根式法则计算即可【详解】解:原式故答案为:【点睛】此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键15、【解析】分析题意,如图所示,连接BF,由翻折变换可知,BFAE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.AEF是由ABE沿AE折叠得到的,BFAE,BE=EF.BC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理

19、有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质16、a(a1)(a + 1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解解答:解:a3-a,=a(a2-1),=a(a+1)(a-1)17、【解析】试题分析:将4400000用科学记数法表示为:4.41故答案为4.41考点:科学记数法表示较大的数18、(-2,6) 【解析】分析:连接OB1,作B1HOA于H,证明AOBHB1O,得到

20、B1H=OA=6,OH=AB=2,得到答案详解:连接OB1,作B1HOA于H,由题意得,OA=6,AB=OC-2,则tanBOA=,BOA=30,OBA=60,由旋转的性质可知,B1OB=BOA=30,B1OH=60,在AOB和HB1O,AOBHB1O,B1H=OA=6,OH=AB=2,点B1的坐标为(-2,6),故答案为(-2,6)点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、3.05米【解析】延长FE交CB的延长线于M, 过A作AGFM于G, 解直角三

21、角形即可得到正确结论【详解】解:如图:延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan60=1.51.73=2.595,GM=AB=2.595,在RtAGF中,FAG=FHE=45,sinFAG=,sin45=,FG=1.76,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米【点睛】本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键20、小亮说的对,CE为2.6m【解析】先根据CEAE,判断出CE为高,再根据解直角三角形的知识解答【详解】解:在ABD中,ABD90,BAD18,BA10m,tanBADBDBA,BD

22、10tan18,CDBDBC10tan180.52.7(m),在ABD中,CDE90BAD72,CEED,sinCDECECD,CEsinCDECDsin722.72.6(m),2.6m2.7m,且CEAE,小亮说的对答:小亮说的对,CE为2.6m【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.21、2【解析】先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.【详解】解:原式=2+2+2=22+2=2【点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握

23、各知识点是解答本题的关键.22、(1)k1;(2)当4k1时,抛物线与x轴有且只有一个公共点【解析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当1x2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)抛物线y(xh)2+k的对称轴是直线x1,h1,把原点坐标代入y(x1)2+k,得,(21)2+k2,解得k1;(2)抛物线y(x1)2+k与x轴有公共点,对于方程(x1)2+k2,判别式b24ac4k2,k2当x1时,y4+k;当x2时,y1+k,抛物线的对称

24、轴为x1,且当1x2时,抛物线与x轴有且只有一个公共点,4+k2且1+k2,解得4k1,综上,当4k1时,抛物线与x轴有且只有一个公共点【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.23、(1)A(8,0),B(0,6);(2);(3)存在P点坐标为(4+,-1)或(4,-1)或(4+,1)或(4,1)时,使得【解析】分析:(1)令已知的直线的解析式中x=0,可求出B点坐标,令y=0,可求出A点坐标;(2)根据A、B的坐标易得到M点坐标,若抛物线的顶点C在M上,那么C点必为抛物线对称轴与O的交点;根据A、B的坐标可求出AB的长,进而可得到M的半径及C点的坐标

25、,再用待定系数法求解即可;(3)在(2)中已经求得了C点坐标,即可得到AC、BC的长;由圆周角定理: ACB=90,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P点坐标本题解析:(1)对于直线,当时,;当时,所以A(8,0),B(0,6); (2)在RtAOB中,AB=10,AOB=90,AB为M的直径,点M为AB的中点,M(4,3),MCy轴,MC=5,C(4,2),设抛物线的解析式为y=a(x+4)+2,把B(0,6)代入得16a+2=6,解得a= ,抛物线的解析式为 ,即;(3)存在当y=0时, ,解得x,=2,x,=6,D(6,0),E(2,0), 设P(t,-6),=20

26、,即|=1,当=-1,解得, ,此时P点坐标为(4+,-1)或(4,-1);当时 ,解得=4+,=4;此时P点坐标为(4+,1)或(4,1)综上所述,P点坐标为(4+,-1)或(4,-1)或(4+,1)或(4,1)时,使得点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.24、(1)3+1 (2)证明见解析【解析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=3x,根据AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解决问题(2)如图2中,作CQ

27、AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15,AME=MBE+MEB=30,设 AE=x,则 ME=BM=2x,AM=3x,AB2+AE2=BE2,2x+3x2+x2=22,x=6-22 (负根已经舍弃),AB=AC=(2+ 3)6-22 ,BC= 2 AB= 3+1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90,F

28、GCD,AEB=CMF,GEM=GME,EG=MG,ABE=CAQ,AB=AC,BAE=ACQ=90,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题25、(1)证明见解析 (2)6【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出ODEF,即可得出答案;(2)直接利用得出SACDSCOD,再利用S阴影SAEDS扇形COD,求出答案【详解】(1)证明:连接OD,D为弧BC的中点,CADBAD,OAOD,BADADO,CADADO,DEAC,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论