




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的函数的周期为4,当时,则( )ABCD2已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是( )ABCD3已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为( )ABC2D44已知等比数列满足,则( )ABCD
2、5( )ABCD6函数且的图象是( )ABCD7已知等差数列中,则数列的前10项和( )A100B210C380D4008将函数的图象分别向右平移个单位长度与向左平移(0)个单位长度,若所得到的两个图象重合,则的最小值为( )ABCD9已知正项数列满足:,设,当最小时,的值为( )ABCD10第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为(
3、)ABCD11已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是( )A()B()C()D()12如图,在平行四边形中,对角线与交于点,且,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13将函数的图象向左平移个单位长度,得到一个偶函数图象,则_14某公园划船收费标准如表:某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为_元,租船的总费用共有_种可能.15已知函数,若函数有3个不同的零点x1,x2,x3(x1x2x3),则的取值范围是_16一个长、宽、高分别为1、2、2的长方体可以在一个
4、圆柱形容器内任意转动,则容器体积的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)18(12分)已知曲线的参数方程为 为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.19(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的
5、纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.20(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(为参数).()求曲线C1和C2的极坐标方程:()设射线=(0)分别与曲线C1和C2相交于A,B两点,求|AB|的值21(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x2|m)(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)2的解集是R,求m的取值范围22(10分)如图,D是在ABC边AC上的一点,BCD面积是AB
6、D面积的2倍,CBD=2ABD=2()若=,求的值;()若BC=4,AB=2,求边AC的长参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.2B【解析】利用换元法设,则等价为有且只有一个实数根,分 三种情况进行讨论,结合函数的图象,求出的取值范围.【详解】解:设 ,则有且只有一个实数根
7、.当 时,当 时, ,由即,解得,结合图象可知,此时当时,得 ,则 是唯一解,满足题意;当时,此时当时,此时函数有无数个零点,不符合题意;当 时,当 时,此时 最小值为 ,结合图象可知,要使得关于的方程有且只有一个实数根,此时 .综上所述: 或.故选:A.【点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.3A【解析】由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【详解】解:设双曲线的半个焦距为,由题意又,则,所以离心率,故选:A.【点睛】本题考查双曲线的简单几何性质,属于基础题4B【解析】由a1+a3+a5=21得 a3+a5+a7=,选B.5D【解
8、析】利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.6B【解析】先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,是偶函数,关于轴对称,排除C,D.又,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.7B【解析】设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.8
9、B【解析】首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.9B【解析】由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.10B【解析】根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,
10、由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.11B【解析】根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【详解】依题意得,即,解得或(其中,).又,即(其中).由得或,即或(其中,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.12C【解析】画出图形,以为基底将向量进行分解后可得结果【详解】画出图形,如下图选取为基底,则,故选C【点睛】应用
11、平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.14
12、360 10 【解析】列出所有租船的情况,分别计算出租金,由此能求出结果.【详解】当租两人船时,租金为:元,当租四人船时,租金为:元,当租1条四人船6条两人船时,租金为:元,当租2条四人船4条两人船时,租金为:元,当租3条四人船2条两人船时,租金为:元,当租1条六人船5条2人船时,租金为:元,当租2条六人船2条2人船时,租金为:元,当租1条六人船1条四人船3条2人船时,租金为:元,当租1条六人船2条四人船1条2人船时,租金为:元,当租2条六人船1条四人船时,租金为:元,综上,租船最低总费用为360元,租船的总费用共有10种可能.故答案为:360,10.【点睛】本小题主要考查分类讨论的数学思想方
13、法,考查实际应用问题,属于基础题.15【解析】先根据题意,求出的解得或,然后求出f(x)的导函数,求其单调性以及最值,在根据题意求出函数有3个不同的零点x1,x2,x3(x1x2x3),分情况讨论求出的取值范围.【详解】解:令t=f(x),函数有3个不同的零点,即+m=0有两个不同的解,解之得 即或因为的导函数,令,解得xe,解得0 xe,可得f(x)在(0,e)递增,在递减;f(x)的最大值为 ,且 且f(1)=0;要使函数有3个不同的零点,(1)有两个不同的解,此时有一个解;(2)有两个不同的解,此时有一个解当有两个不同的解,此时有一个解,此时 ,不符合题意;或是不符合题意;所以只能是 解
14、得 ,此时=-m,此时 有两个不同的解,此时有一个解此时 ,不符合题意;或是不符合题意;所以只能是解得 ,此时=,综上:的取值范围是故答案为【点睛】本题主要考查了函数与导函数的综合,考查到了函数的零点,导函数的应用,以及数形结合的思想、分类讨论的思想,属于综合性极强的题目,属于难题.16【解析】一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则圆柱形容器的底面直径及高的最小值均等于长方体的体对角线的长,长方体的体对角线的长为,所以容器体积的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2).【解析】(1)将代入函数解析式可
15、得,构造函数,求得并令,由导函数符号判断函数单调性并求得最大值,由即可证明恒成立,即不等式得证.(2)对函数求导,变形后讨论当时的函数单调情况:当时,可知满足题意;将不等式化简后构造函数,利用导函数求得极值点与函数的单调性,从而求得最小值为,分别依次代入检验的符号,即可确定整数的最大值;当时不满足题意,因为求整数的最大值,所以时无需再讨论.【详解】(1)证明:当时代入可得,令,则,令解得,当时,所以在单调递增,当时,所以在单调递减,所以,则,即成立.(2)函数则,若时,当时,则在时单调递减,所以,即当时成立;所以此时需满足的整数解即可,将不等式化简可得,令 则令解得,当时,即在内单调递减,当时
16、,即在内单调递增,所以当时取得最小值,则,所以此时满足的整数 的最大值为;当时,在时,此时,与题意矛盾,所以不成立.因为求整数的最大值,所以时无需再讨论,综上所述,当时,整数的最大值为.【点睛】本题考查了导数在证明不等式中的应用,导数与函数单调性、极值、最值的关系和应用,构造函数法求最值,并判断函数值法符号,综合性强,属于难题.18(1),表示圆心为,半径为的圆;(2)【解析】(1)根据参数得到直角坐标系方程,再转化为极坐标方程得到答案.(2)直线方程为,计算圆心到直线的距离加上半径得到答案.【详解】(1),即,化简得到:.即,表示圆心为,半径为的圆.(2),即,圆心到直线的距离为.故曲线上的
17、点到直线的最大距离为.【点睛】本题考查了参数方程,极坐标方程,直线和圆的距离的最值,意在考查学生的计算能力和应用能力.19(1)(2)【解析】(1) 设出直线的方程,再与抛物线联立方程组,进而求得点的坐标,结合弦长即可求得抛物线的方程;(2) 设直线的方程,运用韦达定理可得,可得之间的关系,再运用进行裂项,可求得,解不等式求得的值.【详解】解:(1)设过抛物线焦点的直线方程为,与抛物线方程联立得:,设,所以,所以抛物线方程为(2)设直线方程为,由得.【点睛】本题考查了直线与抛物线的关系,考查了韦达定理和运用裂项法求数列的和,考查了运算能力,属于中档题.20(),;()【解析】()根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.()将射线=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.【详解】()由所以曲线的极坐标方程为,曲线的普通方程为则曲线的极坐标方程为()令,则,则,即,所以,故【点睛】本题考查极坐标方程和参数方程与直角坐标方程的转化,以及极坐标方程中的几何意义,属基础题.21(1),(2) 【解析】试题分析:用零点分区间讨论法解含绝对值的不等式,根据绝对值三角不等式得出,不等式|x+1|+|x2|m+4解集是R,只需m+43,得出的范围.试题解析:(1)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 声测管注浆施工方案
- 美术培训机构宣讲
- 上海市延安实验初级中学2026届九年级英语第一学期期末监测模拟试题含解析
- 高胆红素血症的护理措施
- 行为管理安全培训
- 2026届石狮七中学英语九年级第一学期期末质量检测试题含解析
- 黑龙江省哈尔滨市松北区2026届化学九年级第一学期期中调研试题含解析
- 山东省济南市育英中学2026届九上化学期中质量检测模拟试题含解析
- 2026届吉林省长春市中学九年级化学第一学期期中达标测试试题含解析
- 2026届安徽省六安市舒城县九年级化学第一学期期末质量检测试题含解析
- 【数学】角的平分线 课件++2025-2026学年人教版(2024)八年级数学上册
- 幼儿园副园长岗位竞聘自荐书模板
- 第1课 独一无二的我教学设计-2025-2026学年小学心理健康苏教版三年级-苏科版
- 反对邪教主题课件
- 化工阀门管件培训课件
- 新疆吐鲁番地区2025年-2026年小学六年级数学阶段练习(上,下学期)试卷及答案
- TCT.HPV的正确解读课件
- 白酒生产安全员考试题库及答案解析
- 决策分析管理运筹学课件
- SP30超级数字程控交换机技术手册
- 新能源汽车技术完整版课件
评论
0/150
提交评论