




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1由曲线围成的封闭图形的面积为( )ABCD2已知实数,则的大小关系是()ABCD3若复数满足,则( )ABCD4曲线在点处的切线方程为,则( )ABC4D85已知向量满足,且与的夹角
2、为,则( )ABCD6已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:点为函数的一个对称中心其中所有正确结论的编号是( )ABCD7一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16).则首项为2,某一项为2020的超级斐波那契数列的个数为( )A3B4C5D68要得到函数的图象,只需将函数图象上所有点的横坐标( )A伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C缩短到原来的倍(纵坐标不变),再将得
3、到的图象向左平移个单位长度D缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度9设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为ABCD10函数在的图象大致为ABCD11在中,内角所对的边分别为,若依次成等差数列,则( )A依次成等差数列B依次成等差数列C依次成等差数列D依次成等差数列12函数的部分图像大致为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若幂函数的图象经过点,则其单调递减区间为_14在边长为2的正三角形中,则的取值范围为_.15已知向量满足,则_.16已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之
4、和为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.18(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.()若线段的中点坐标为,求直线的方程;()若直线过点,点满足(,分别为直线,的斜率),求的值.19(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两
5、点,设,连接交椭圆于另一点求证:直线过定点并求出点的坐标;(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围20(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.21(12分)若数列前n项和为,且满足(t为常数,且)(1)求数列的通项公式:(2)设,且数列为等比数列,令,.求证:.22(10分)如图,已知四棱锥,底面为边长为2的菱形,平面,是的中点,()
6、 证明:;() 若为上的动点,求与平面所成最大角的正切值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.2B【解析】根据,利用指数函数对数函数的单调性即可得出【详解】解:,故选:B【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题3B【解析】由题意得,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算
7、,考查运算求解能力,属于基础题.4B【解析】求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.5A【解析】根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.6B【解析】首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【详解】解:由题意可得,又和的图象都关于对称,解得,即,又,正确,错误.故选:B【点睛】本题考查三角函数的性质的应用,三角函数的变换规则,属于基础题.7A
8、【解析】根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【详解】由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.【点睛】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.8B【解析】分析:根据三角函数的图象关系进行判断即可详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到 再将得到的图象向左平移个单位长度得到 故选B点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键9A【解析】画出不等式组表示的区域,求出其面积,再
9、得到在区域内的面积,根据几何概型的公式,得到答案.【详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.10A【解析】因为,所以排除C、D当从负方向趋近于0时,可得.故选A11C【解析】由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列, 正弦定理得,由余弦定理得 ,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题
10、. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到12A【解析】根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为,所以的定义域为,则,为偶函数,图象关于轴对称,排除选项,且当时,排除选项,所以正确.故选:A.【点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.二
11、、填空题:本题共4小题,每小题5分,共20分。13【解析】利用待定系数法求出幂函数的解析式,再求出的单调递减区间【详解】解:幂函数的图象经过点,则,解得;所以,其中;所以的单调递减区间为故答案为:【点睛】本题考查了幂函数的图象与性质的应用问题,属于基础题14【解析】建立直角坐标系,依题意可求得,而,故可得,且,由此构造函数,利用二次函数的性质即可求得取值范围【详解】建立如图所示的平面直角坐标系,则,设,根据,即,则,即,则,所以,且,故,设,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为故答案为:【点睛】本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归
12、思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题151【解析】首先根据向量的数量积的运算律求出,再根据计算可得;【详解】解:因为,所以又所以所以故答案为:【点睛】本题考查平面向量的数量积的运算,属于基础题.1664【解析】由题意先求得的值,再令求出展开式中所有项的系数和.【详解】的展开式中项的系数与项的系数分别为135与,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),
13、.(2)【解析】(1)根据直线的参数方程为(为参数),消去参数,即可求得的的普通方程,曲线的极坐标方程为,利用极坐标化直角坐标的公式: ,即可求得答案;(2)的标准方程为,圆心为,半径为,根据点到直线距离公式,即可求得答案.【详解】(1)直线的参数方程为(为参数),消去参数的普通方程为.曲线的极坐标方程为,利用极坐标化直角坐标的公式:的直角坐标方程为.(2)的标准方程为,圆心为,半径为圆心到的距离为,点到的距离的取值范围是.【点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.18()()【解析】()根据点差法,即可求得直线的斜率,则方程即可
14、求得;()设出直线方程,联立椭圆方程,利用韦达定理,根据,即可求得参数的值.【详解】(1)设,则两式相减,可得.(*)因为线段的中点坐标为,所以,.代入(*)式,得.所以直线的斜率.所以直线的方程为,即.()设直线:(),联立整理得.所以,解得.所以,.所以,所以.所以.因为,所以.【点睛】本题考查中点弦问题的点差法求解,以及利用代数与几何关系求直线方程,涉及韦达定理的应用,属中档题.19(1);(2)证明详见解析,;(3).【解析】(1)根据题意列出关于的等式求解即可.(2)先根据对称性,直线过的定点一定在轴上,再设直线的方程为,联立直线与椭圆的方程, 进而求得的方程,并代入,化简分析即可.
15、(3)先分析过点的直线斜率不存在时的值,再分析存在时,设直线的方程为,联立直线与椭圆的方程,得出韦达定理再代入求解出关于的解析式,再求解范围即可.【详解】解:设椭圆的标准方程焦距为,由题意得,由,可得则,所以椭圆的标准方程为;证明:根据对称性,直线过的定点一定在轴上,由题意可知直线的斜率存在,设直线的方程为,联立,消去得到,设点,则所以,所以的方程为,令得,将,代入上式并整理,整理得,所以,直线与轴相交于定点当过点的直线的斜率不存在时,直线的方程为,此时,当过点的直线斜率存在时,设直线的方程为,且在椭圆上,联立方程组,消去,整理得,则所以所以,所以,由得,综上可得,的取值范围是【点睛】本题主要
16、考查了椭圆的基本量求解以及定值和范围的问题,需要分析直线的斜率是否存在的情况,再联立直线与椭圆的方程,根据韦达定理以及所求的解析式,结合参数的范围进行求解.属于难题.20(1)极坐标方程为,点的极坐标为(2)【解析】(1)利用极坐标方程、普通方程、参数方程间的互化公式即可;(2)只需算出A、B两点的极坐标,利用计算即可.【详解】(1)曲线C:(为参数,),将代入,解得,即曲线的极坐标方程为,点的极坐标为.(2)由(1),得点的极坐标为,由直线过原点且倾斜角为,知点的极坐标为,.【点睛】本题考查极坐标方程、普通方程、参数方程间的互化以及利用极径求三角形面积,考查学生的运算能力,是一道基础题.21(1)(2)详见解析【解析】(1)利用可得的递推关系,从而可求其通项.(2)由为等比数列可得,从而可得的通项,利用错位相减法可得的前项和,利用不等式的性质可证.【详解】(1)由题意,得:(t为常数,且),当时,得,得.由,故,故.(2)由,由为等比数列可知:,又,故,化简得到,所以或(舍).所以,则.设的前n项和为.则,相减可得【点睛】数列的通项与前项和 的关系式,我们常利用这个关系式实现与之间的相互转化. 数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶制造智能制造模式-洞察阐释
- 头癣患者的抓取反应与皮疹反应相关性研究-洞察阐释
- 农业生态系统服务的生态系统服务价值的长期效应研究-洞察阐释
- 宠物摄影作品评价-洞察阐释
- 自然色调与室内空气质量关系-洞察阐释
- 虚拟人身体语言生成的用户体验研究-洞察阐释
- 线雕技术在皮肤紧致中的应用-洞察阐释
- 房地产行业政策调控下的市场波动分析-洞察阐释
- 深海新能源开发与可持续利用-洞察阐释
- 社会学与网络行为研究的交叉探索-洞察阐释
- 钢箱梁加工制作及安装方案
- 铁路货物运价规则
- 2024版园林景观工程建设项目招投标代理合同3篇
- 2024-2025学年上学期上海六年级英语期末复习卷3
- 十四五人才发展规划
- 【MOOC】中国税法:案例·原理·方法-暨南大学 中国大学慕课MOOC答案
- 习近平总书记教育重要论述(宜宾学院)知到智慧树章节答案
- DB32T 4457-2023 养老机构认知障碍照护专区设置与服务规范
- 《汽车基础知识培训》课件
- 游泳池紧急救援管理制度
- 教研组工作汇报课件
评论
0/150
提交评论