高考数学知识点总结:双曲线知识汇总_第1页
高考数学知识点总结:双曲线知识汇总_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.*;高考数学知识点总结:双曲线知识汇总?双曲线方程双曲线的第一定义:双曲线标准方程:. 一般方程:.i. 焦点在x轴上:顶点: 焦点: ?准线方程 渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. 离心率. 准线距两准线的间隔 ;通径. 参数关系. 焦点半径公式:对于双曲线方程分别为双曲线的左、右焦点或分别为双曲线的上下焦点“长加短减原那么:构成满足与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.共轭双曲线:以双曲线的虚轴

2、为实轴,实轴为虚轴的双曲线,叫做双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.共渐近线的双曲线系方程:的渐近线方程为假如双曲线的渐近线为时,它的双曲线方程可设为.例如:假设双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.直线与双曲线的位置关系:区域:无切线,2条与渐近线平行的直线,合计2条;区域:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域:2条切线,2条与渐近线平行的直线,合计4条;区域:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有

3、且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.2假设直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.假设P在双曲线,那么常用结论1:P到焦点的间隔 为m = n,那么P到两准线的间隔 比为mn.唐宋或更早之前,针对“经学“律学“算学和“书学各科目,其相应传授者称为“博士,这与当今“博士含义已经相去甚远。而对那些特别讲授“武事或讲解“经籍者,又称“讲师。“教授和“助教均原为学官称谓。前者始于宋,乃“宗学“律学“医学“武学等科目的讲授者;而后者那么于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教在古代不仅要作入流的学问,

4、其教书育人的职责也十清楚晰。唐代国子学、太学等所设之“助教一席,也是当朝打眼的学官。至明清两代,只设国子监国子学一科的“助教,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士“讲师,还是“教授“助教,其今日老师应具有的根本概念都具有了。简证: =.“师之概念,大体是从先秦时期的“师长、师傅、先生而来。其中“师傅更早那么意指春秋时国君的老师。?说文解字?中有注曰:“师教人以道者之称也。“师之含义,如今泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师的原意并非由“老而形容“师。“老在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老“师连用最初见于?史记?,有“荀卿最为老师之说法。渐渐“老师之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师当然不是今日意义上的“老师,其只是“老和“师的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道,但其不一定是知识的传播者。今天看来,“老师的必要条件不光是拥有知识,更重于传播知识。常用结论2:从双曲线一个焦点到另一条渐近线的间隔 等于b.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论