四川省内江市球溪2021-2022学年高考数学全真模拟密押卷含解析_第1页
四川省内江市球溪2021-2022学年高考数学全真模拟密押卷含解析_第2页
四川省内江市球溪2021-2022学年高考数学全真模拟密押卷含解析_第3页
四川省内江市球溪2021-2022学年高考数学全真模拟密押卷含解析_第4页
四川省内江市球溪2021-2022学年高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则等于( )ABCD2某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A1

2、00B1000C90D903已知函数()的部分图象如图所示.则( )ABCD4如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是( )A等于4B大于4C小于4D不确定5已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )ABCD6已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )ABCD7已知为坐标原点,角的终边经过点且,则( )ABCD8已知,是球的球面上四个不同的点,若,且平面平面,则球的表面积为( )ABCD9记为数列的前项和数列对任意

3、的满足.若,则当取最小值时,等于( )A6B7C8D910等比数列中,则与的等比中项是( )A4B4CD11我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( )ABCD以上都不对12德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了

4、包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有割圆密率捷法一书,为我国用级数计算开创了先河.如图所示的程序框图可以用莱布尼兹“关于的级数展开式”计算的近似值(其中P表示的近似值),若输入,则输出的结果是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知定义在的函数满足,且当时,则的解集为_.14已知非零向量的夹角为,且,则_.15已知数列满足,则_16已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四边形中,;如图,将沿边折起,连结,使,求

5、证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.18(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望19(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用

6、表示),并写出时该周长的具体取值20(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.21(12分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生新生接待其实也是和社会沟通的一个平台校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:愿意不愿意男生6020女士4040(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列

7、,并求附:,其中0.050.010.0013.8416.63510.82822(10分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男235151812女051010713 (1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”视频率为概率在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保

8、达人”又有女“环保达人”的概率;为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】先化简集

9、合A,再与集合B求交集.【详解】因为,所以.故选:C【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.2A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.3C【解析】由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【详解】依题意,即,解得;因为所以,当时,.故选:C.【点睛】本题主要考查了由三角函数的图象求解析式和已知

10、函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.4A【解析】利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题5D【解析】由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.6B【解析】由三视图可知,该三棱锥如图, 其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【详解】由三视图可

11、知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【点睛】本题考查三视图还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.7C【解析】根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.8A【解析】由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案【详解】如图,取BC中点

12、G,连接AG,DG,则,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为故选A【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题9A【解析】先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.

13、10A【解析】利用等比数列的性质可得 ,即可得出【详解】设与的等比中项是由等比数列的性质可得, 与的等比中项 故选A【点睛】本题考查了等比中项的求法,属于基础题11A【解析】首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,共种情况,故随机选出两个不同的数,其和等于的概率故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.12B【解析】执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循

14、环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由已知得出函数是偶函数,再得出函数的单调性,得出所解不等式的等价的不等式,可得解集.【详解】因为定义在的函数满足,所以函数是偶函数,又当时,得时,所以函数在上单调递减,所以函数在上单调递减,函数在上单调递增,所以不等式等价于,即或,解得或,所以不等式的解集为:.故答案为:.【点睛】本题考查抽象函数的不等式的求解

15、,关键得出函数的奇偶性,单调性,属于中档题.141【解析】由已知条件得出,可得,解之可得答案.【详解】向量的夹角为,且,可得:,可得,解得,故答案为:1.【点睛】本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.15【解析】项和转化可得,讨论是否满足,分段表示即得解【详解】当时,由已知,可得,故,由-得,显然当时不满足上式,故答案为:【点睛】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.16【解析】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定

16、理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,.故答案为:.【点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见详解;(2)【解析】(1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接、,可得,可求出.在中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量

17、法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.【详解】证明:(1)在中,为正三角形,且在中,为等腰直角三角形,且取的中点,连接,平面平面平面.平面平面(2)以为坐标原点,建立如图所示的空间直角坐标系,则,设.则设平面的一个法向量为.则,令,解得与平面所成角的正弦值为,整理得解得或(含去)又为平面的一个法向量,二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直的判定,向量法解决线面角、二面角的问题,属于中档题.18(1)当或时,有3个坑要补播种的概率最大,最大概率为; (2)见解析.【解析】(1)将有3个坑需

18、要补种表示成n的函数,考查函数随n的变化情况,即可得到n为何值时有3个坑要补播种的概率最大(2)n1时,X的所有可能的取值为0,1,2,3,1分别计算出每个变量对应的概率,列出分布列,求期望即可【详解】(1)对一个坑而言,要补播种的概率,有3个坑要补播种的概率为.欲使最大,只需,解得,因为,所以当时,;当时,;所以当或时,有3个坑要补播种的概率最大,最大概率为.(2)由已知,的可能取值为0,1,2,3,1.,所以的分布列为01231的数学期望.【点睛】本题考查了古典概型的概率求法,离散型随机变量的概率分布,二项分布,主要考查简单的计算,属于中档题19(1)(2)的周长为,时,的周长为【解析】(

19、1)设的方程为,根据题意由点到直线的距离公式可得,将直线方程与抛物线方程联立可得,设坐标分别是,利用韦达定理以及中点坐标公式消参即可求解.(2)根据抛物线的定义可得,由(1)可得,再利用弦长公式即可求解.【详解】(1)设的方程为于是联立设坐标分别是则设的中点坐标为,则消去参数得:(2)设,由抛物线定义知,由(1)知,的周长为时,的周长为【点睛】本题考查了动点的轨迹方程、直线与抛物线的位置关系、抛物线的定义、弦长公式,考查了计算能力,属于中档题.20(1)证明见解析;(2).【解析】(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,令,得或,故根据0与的大小关系来进

20、行分类讨论即可【详解】证明:(1)令,则.分析知,函数的增区间为,减区间为.所以当时,.所以,即,所以.所以当时,.解:(2)因为,所以.讨论:当时,此时函数在区间上单调递减.又,故此时函数仅有一个零点为0;当时,令,得,故函数的增区间为,减区间为,.又极大值,所以极小值.当时,有.又,此时,故当时,函数还有一个零点,不符合题意;当时,令得,故函数的增区间为,减区间为,.又极小值,所以极大值.若,则,得,所以,所以当且时,故此时函数还有一个零点,不符合题意.综上,所求实数的值为.【点睛】本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题21(1)有99%把握认为愿意参加新生接待工作与性别有关;(2)详见解析.【解析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论