




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是( )ABCD2已知ab0,c1,则下列各式成立的是()AsinasinbBcacbCacbcD3函数与的图
2、象上存在关于直线对称的点,则的取值范围是( )ABCD4已知三棱锥中,为的中点,平面,则有下列四个结论:若为的外心,则;若为等边三角形,则;当时,与平面所成的角的范围为;当时,为平面内一动点,若OM平面,则在内轨迹的长度为1其中正确的个数是( )A1B1C3D45已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD26已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )ABCD7集合,则( )ABCD8已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数
3、不等式恒成立,则实数的取值范围为( )ABCD9已知向量,(其中为实数),则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10如图,中,点D在BC上,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,则,的大小关系是( )ABC,两种情况都存在D存在某一位置使得11已知为实数集,则( )ABCD12双曲线的渐近线方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13九章算术中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不
4、少。问人数、猪价各多少?”.设分别为人数、猪价,则_,_.14的展开式中,的系数是_.15在平面直角坐标系中,点的坐标为,点是直线:上位于第一象限内的一点已知以为直径的圆被直线所截得的弦长为,则点的坐标_16我国古代数学名著九章算术对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()若,求曲线在点处的切线方程;()若在上恒成立,求实数的取值范围;()若数列的
5、前项和,求证:数列的前项和.18(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.19(12分)已知数列,其前项和为,若对于任意,且,都有.(1)求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.20(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.21(12分)已知.(1)当时,求不等式的解集;(2)若,证明:.22(10分)在直角坐标系中,曲线的参数方程为(为参数)
6、.以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上
7、单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,则,解得:设,则,解得:,则本题正确选项:【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.2B【解析】根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为ycx为增函数,且ab,所以cacb,正确对C,因为yxc为增函数,故 ,错误;对D, 因为在为减函数,故
8、 ,错误故选B【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题3C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题4C【解析】由线面垂直的性质,结合勾股定理可判断正确; 反证法由线面垂直的判断和性质可判断错误;由线面角的定义和转化为
9、三棱锥的体积,求得C到平面PAB的距离的范围,可判断正确;由面面平行的性质定理可得线面平行,可得正确.【详解】画出图形:若为的外心,则,平面,可得,即,正确;若为等边三角形,又可得平面,即,由可得,矛盾,错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为, 即的范围为,正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得正确;所以正确的是:故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.5A【解析】设点的坐标为,代
10、入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.6D【解析】设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了
11、数学运算能力.7A【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,属于简单题.8C【解析】由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,所以,显然当时,故,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.9A【解析】结合向量垂直的坐
12、标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.10A【解析】根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,设,则有,可得,;,;,综上可得,故选:【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平11C【解析】求出集
13、合,由此能求出【详解】为实数集,或,故选:【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题12C【解析】根据双曲线的标准方程,即可写出渐近线方程.【详解】 双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。1310 900 【解析】由题意列出方程组,求解即可.【详解】由题意可得,解得.故答案为10 900【点睛】本题主要考查二元一次方程组的解法,用消元法来求解即可,属于基础题型.14【解析】先将原式展开成,发现中不含,故只研究后面一项即可得解.【详解】,依题意
14、,只需求中的系数,是.故答案为:-40【点睛】本题考查二项式定理性质,关键是先展开再利用排列组合思想解决,属于基础题.15【解析】依题意画图,设,根据圆的直径所对的圆周角为直角,可得,通过勾股定理得,再利用两点间的距离公式即可求出,进而得出点坐标.【详解】解:依题意画图,设以为直径的圆被直线所截得的弦长为,且,又因为为圆的直径,则所对的圆周角,则, 则为点到直线:的距离.所以,则.又因为点在直线:上,设,则.解得,则.故答案为: 【点睛】本题考查了直线与圆的位置关系,考查了两点间的距离公式,点到直线的距离公式,是基础题.16【解析】三视图还原如下图:,由于每个面是直角,显然外接球球心O在AC的
15、中点.所以,填。【点睛】三视图还原,当出现三个尖点在一个位置时,我们常用“揪尖法”。外接球球心到各个顶点的距离相等,而直角三角形斜边上的中点到各顶点的距离相等,所以本题的球心为AC中点。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 ();();()证明见解析.【解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:()因为,所以,切点为.由,所以,所以曲线在处的切线方程为,即()由,令,则(当且仅当取等号).故在上为增函数.当时,,故在上为增函数,所以恒成立,故符合题意;当时,由于,根据零点存在
16、定理,必存在,使得,由于在上为增函数,故当时,,故在上为减函数, 所以当时,,故在上不恒成立,所以不符合题意.综上所述,实数的取值范围为(III)证明:由由()知当时,故当时, 故,故.下面证明:因为而,所以,即:点睛:本题考查了利用导数的几何意义求出参数及证明不等式成立,借助第二问的证明过程,利用导数的单调性证明数列的不等式,在求解的过程中还要求出数列的和,计算较为复杂,本题属于难题18(1);(2)证明见解析.【解析】(1)由题意求得的坐标,代入椭圆方程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程
17、,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直线CD的方程为,代入,得:设,则有,则AC的方程为,令,得BD的方程为,令,得,证毕.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是难题19(1)证明见解析;(2).【解析】(1)用数学归纳法证明即可;(2)根据条件可得,然后将用,表示出来,根据是一个整数,可得结果【详解】解:(1)令,则即,成等差数列,下面用数学归纳法证明数列是等差数列,假设成等差数列,其中,公差为,令,即,成等差数列,数列是等差数列;(2),若存在正整数,使得是整数,则
18、,设,是一个整数,从而又当时,有,综上,的最小值为【点睛】本题主要考查由递推关系得通项公式和等差数列的性质,关键是利用数学归纳法证明数列是等差数列,属于难题20(1),;(2).【解析】(1)根据面积公式和数量积性质求角及最大边;(2)根据的长度求出,再根据面积比值求,从而求出【详解】(1)在中,由,得,由,得,所以,所以,因为在中,所以,因为(当且仅当时取等),所以长的最小值为;(2)在三角形中,因为为中线,所以,所以,因为,所以,所以,由(1)知,所以,或,所以,因为为角平分线,或2,所以,或,所以【点睛】本题考查了平面向量数量积的性质及其运算,余弦定理解三角形及三角形面积公式的应用,属于中档题21 (1) (2)见证明【解析】(1) 利用零点分段法讨论去掉绝对值求解;(2) 利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,所以;当时,.所以不等式的解集是.(2)证明:由,得,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.22(1)的极坐标方程为,普通方程为;(2)【解析】(1)根据三角函数恒等变换可得, ,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《透射电子显微镜》教学课件
- 《产品设计思路》课件
- 《运动性肌肉疲劳》课件
- 建筑快速表现案例分析
- 《计算机组成原理》课件
- 汽车美容有限公司
- 2025宁夏公务员行测a真题及答案
- 《社交媒体营销策略》课件
- 《销售经理培训》课件
- 高考理科第三章三角函数、三角恒等变换、解三角形3.8
- 手术物品清点标准操作程序-手术物品清点流程
- 武术基本功五步拳 教案6篇
- 超构表面透镜在生物医学成像领域应用
- 小水滴的诉说省公开课一等奖新名师优质课比赛一等奖课件
- 人体生物医学研究伦理审查PPT幻灯片
- 详解 强基计划
- 餐饮场所消防安全培训
- 乡村卫生室服务一体化管理工作制度
- 制作自然发酵酸奶的方法
- 《肖申克的救赎》中英双语剧本
- 护士长管理能力培训讲义课件
评论
0/150
提交评论