2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形章节训练试题(含详细解析)_第1页
2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形章节训练试题(含详细解析)_第2页
2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形章节训练试题(含详细解析)_第3页
2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形章节训练试题(含详细解析)_第4页
2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形章节训练试题(含详细解析)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级数学第二学期第二十二章四边形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下图是文易同学答的试卷,文易同学应得( )A40分B60分C80分D100分2、若一个正多边形的每一个外角都等于3

2、6,则这个正多边形的边数是()A7B8C9D103、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14404、如图,E为正方形ABCD边AB上一动点(不与A重合),AB4,将DAE绕着点A逆时针旋转90得到BAF,再将DAE沿直线DE折叠得到DME下列结论:连接AM,则AMFB;连接FE,当F,E,M共线时,AE44;连接EF,EC,FC,若FEC是等腰三角形,则AE44,其中正确的个数有()个A3B2C1D05、下列四个命题中,正确的是( )A对角线相等的四边形是矩形B有一个角是直角的四边形是矩形C两组对边分别相等的四边形是矩形D四个角都相等的四边形是

3、矩形6、下列说法中,不正确的是( )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形7、如图,在四边形中,面积为21,的垂直平分线分别交于点,若点和点分别是线段和边上的动点,则的最小值为( )A5B6C7D88、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形9、下列说法正确的有( )有一组邻边相等的矩形是正方形 对角线互相垂直的矩形是正方形有一个角是直角的菱形是正方形 对角线相等的菱

4、形是正方形A1个B2个C3个D4个10、下列测量方案中,能确定四边形门框为矩形的是( )A测量对角线是否互相平分B测量两组对边是否分别相等C测量对角线是否相等D测量对角线交点到四个顶点的距离是否都相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形ABCD中,AB2,取AD的中点E,连接EB,延长DA至F,使EFEB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _2、如图,在中,为上的两个动点,且,则的最小值是_3、如图,两点在轴上,点为反比例函数图象上一点,连接,且与反比例函数的图象交于点,若,的面积为2,则的值为_4、一个矩形的两条对角

5、线所夹的锐角是60,这个角所对的边长为10cm,则该矩形的面积为_5、如图,在矩形ABCD中,AB2,AD2,E为BC边上一动点,F、G为AD边上两个动点,且FEG30,则线段FG的长度最大值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形ABCD中,E是AD上一点(E与A、D不重合)连接CE,将绕点D顺时针旋转90,得到(1)求证:;(2)连接EF,若,求的度数2、如图1,四边形ABCD和四边形CEFG都是菱形,其中点E在BC的延长线上,点G在DC的延长线上,点H在BC边上,连结AC,AH,HF已知AB2,ABC60,CEBH(1)求证:ABHHEF;(2)如图2,当H

6、为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF若EHBC,请求出BF的长3、如图,将绕点逆时针旋转30得到,且,两点分别与,两点对应,延长与边交于点,求的度数4、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数5、角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上小强证明该定理的步骤如下:已知:如图1,点P在上,于点D,于点E,且求证:是的平分线证明:通过测量可得,是的平分线(1)关于定理的证明,下面说法正确的是( )A小强用到了从特殊到一般的方法证明该定理B只

7、要测量一百个到角的两边的距离相等的点都在角的平分线上,就能证明该定理C不能只用这个角,还需要用其它角度进行测量验证,该定理的证明才完整D小强的方法可以用作猜想,但不属于严谨的推理证明(2)利用小强的已知和求证,请你证明该定理;(3)如图2,在五边形中,在五边形内有一点F,使得直接写出的度数-参考答案-一、单选题1、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;

8、(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,文易同学答对3道题,得60分,故选:B【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键2、D【分析】根据多边形外角和定理求出正多边形的边数【详解】正多边形的每一个外角都等于36,正多边形的边数10故选:D【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握3、C【分析】先

9、利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.4、A【分析】正确,如图1中,连接AM,延长DE交BF于J,想办法证明BFDJ,AMDJ即可;正确,如图2中,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;正确,如图3中,连接EC,CF,当E

10、F=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题【详解】解:如下图,连接AM,延长DE交BF于J,四边形ABCD是正方形,AB=AD,DAE=BAF=90,由题意可得AE=AF,BAFDAE(SAS),ABF=ADE,ADE+AED=90,AED=BEJ,BEJ+EBJ=90,BJE=90,DJBF,由翻折可知:EA=EM,DM=DA,DE垂直平分线段AM,BFAM,故正确;如下图,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ,则由题意可得M=90,MEJ=MJE=45,JED=JDE=22.5,EJ=JD,设AE=EM=MJ=x,

11、则EJ=JD=x,则有x+x =4,x=44,AE=44,故正确;如下图,连接CF,当EF=CE时,设AE=AF=m,则在BCE中,有2m=4+(4-m)2,m=44或-44 (舍弃),AE=44,故正确;故选A【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题5、D【分析】根据矩形的判定定理判断即可【详解】解:A. 对角线相等的平行四边形是矩形,原选项说法错误,不符合题意;B. 有一个角是直角的平行四边形是矩形,原选项说法错误,不符合题意;C. 两组对边分别相等的四边

12、形是平行四边形,原选项说法错误,不符合题意;D. 四个角都相等的四边形是矩形,原选项说法正确,符合题意;故选:D【点睛】本题考查矩形的判定定理,熟记矩形的判定定理是解题关键6、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关

13、键7、C【分析】连接AQ,过点D作,根据垂直平分线的性质得到,再根据计算即可;【详解】连接AQ,过点D作,面积为21,MN垂直平分AB,当AQ的值最小时,的值最小,根据垂线段最短可知,当时,AQ的值最小,的值最小值为7;故选C【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键8、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方

14、公式分解因式是解题的关键9、D【分析】根据 正方形的判定定理依次分析判断【详解】解:有一组邻边相等的矩形是正方形,故该项正确; 对角线互相垂直的矩形是正方形,故该项正确;有一个角是直角的菱形是正方形,故该项正确; 对角线相等的菱形是正方形,故该项正确;故选:D【点睛】此题考查了正方形的判定定理,正确掌握正方形与矩形菱形的特殊关系及对应添加的条件证得正方形是解题的关键10、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可【详解】解:A、对角线互相平分的四边形是平行四边形,对角线互相平分且相等的四边形才是矩形,选项A不符合题意;B、两组对边分别相等是平行四边形,选项B不符合

15、题意;C、对角线互相平分且相等的四边形才是矩形,对角线相等的四边形不是矩形,选项C不符合题意;D、对角线交点到四个顶点的距离都相等,对角线互相平分且相等,对角线互相平分且相等的四边形是矩形,选项D符合题意;故选:D【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理二、填空题1、【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果【详解】解:设,四边形为正方形,点为的中点,四边形为正方形,故答案为:【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长2、【分析】过点A作AD/BC,

16、且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A,连接AA交BC于点O,连接AM,三点D、M、A共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题【详解】解:过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,MDAN,ADMN,作点A关于BC的对称点A,连接A A交BC于点O,连接AM,则AMAM,AMANAMDM,三点D、M、A共线时,AMDM最小为AD的长,AD/BC,AOBC,DA90,BCBOCOAO,在RtAD中,由勾股定理得:D的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定

17、理等知识,构造平行四边形将AN转化为DM是解题的关键3、4【分析】过点P作PCOA于C,过点N作NDOA于D,设点P坐标为(),表示出点N、点B坐标,根据面积列出方程即可求解【详解】解:过点P作PCOA于C,过点N作NDOA于D,设点P坐标为(),PCND,N点坐标为(), ,点D与点A重合,的面积为2,即的面积为2,解得,;故答案为:4【点睛】本题考查了求反比例函数解析式和中位线的性质,解题关键是恰当作辅助线,设坐标,建立方程4、【分析】先根据矩形的性质证明ABC是等边三角形,得到,则,然后根据勾股定理求出,最后根据矩形面积公式求解即可【详解】:如图所示,在矩形ABCD中,AOB=60,四边

18、形ABCD是矩形,ABC=90,ABC是等边三角形,故答案为:【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质5、【分析】如图所示,在中,FG边的高为AB=2,FEG=30,为定角定高的三角形,故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大,则由矩形ABCD中,AB2,AD2可知,ABD=60,故ABF=60-30=30,则AF=,则FG=AD-AF=【详解】如图所示,在中,FG边的高为AB=2,FEG=30,为定角定高的三角形故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大矩形ABCD中,AB2

19、,AD2ABD=60ABF=60-30=30AF=FG=AD-AF=故答案为:【点睛】本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想 它的应用能使复杂问题简单化、 抽象问题具体化 特殊四边形的几何问题, 很多困难源于问题中的可动点 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱三、解答题1、(1)见详解;(2)15【分析】(1)延长CE,交

20、AF于点H,由题意得,然后问题可求证;(2)由旋转的性质可得,则有,然后问题可求解【详解】(1)证明:延长CE,交AF于点H,如图所示:由旋转的性质得:,四边形ABCD是正方形,即,;(2)解:,由旋转的性质得:,DEF是等腰直角三角形,【点睛】本题主要考查旋转的性质及正方形的性质,熟练掌握旋转的性质及正方形的性质是解题的关键2、(1)见解析;(2);(3)【分析】(1)根据两个菱形中,点E在BC的延长线上,点G在DC的延长线上这一特殊的位置关系和CEBH可证明相应的边和角分别相等,从而证明结论;(2)由ABBC,ABC,可证明ABC是等边三角形,从而证明AHB90,再由ABHHEF,得HFE

21、AHB90,再得DPF180HFE90,在RtDPF中用勾股定理求出DF的长;(3)作FMBG于点M,当EHBC时,可证明CHCMCGBH,从而求出BM、FM的长,再由勾股定理求出BF的长【详解】解:(1)证明:如图1,四边形ABCD和四边形CEFG都是菱形,ABBC,CEEF,CEBH,BHEF,BH+CHCE+CH,BCHE,ABHE;点E在BC的延长线上,点G在DC的延长线上,ABDGEF,BE,在ABH和HEF中,ABHHEF(SAS)(2)如图2,设FH交CG于点P,连结CF,ABBC,ABC60,ABC是等边三角形,BHCH,AHBC,AHB90,由(1)得,ABHHEF,HFEA

22、HB90,DGEF,DPF180HFE90,PFCG,CGFG,GEB60,GFC是等边三角形,PCPGCG;BCAB2,CGEFBHBC1,PC;CDAB2,PD+2,CFCG1,PF2CF2PC212()2,(3)如图3,作FMBG于点M,则BMF90,EHBC,即EHBG,EHFM,CEFACB60,EFMH,四边形EHMF是平行四边形,EHM90,四边形EHMF是矩形,EHFM;EFEC,CEF60,CEF是等边三角形,CECF,EHCFMC90,RtEHCRtFMC(HL),CHCMCG;CGCEBH,CHBH,CMCHBC2,CFCG2CM2,()2()2,BM2+,【点睛】本题主要考查了几何综合,其中涉及到了菱形的性质,全等三角形的判定及性质,等边三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论