杆的扭转定理和公式_第1页
杆的扭转定理和公式_第2页
杆的扭转定理和公式_第3页
杆的扭转定理和公式_第4页
杆的扭转定理和公式_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆截面杆的扭转外力与内力|圆杆扭转切应力与强度条件|圆杆扭转变形与刚度条件|圆杆的非弹性扭转外力与内力杆件扭转的受力特点是在垂直于其轴线的平面内作用有力偶(图22-1a),其变形特点是在任意两个截 面绕轴线发生相对转动。轴类构件常有扭转变形发生。作用在传动轴上的外力偶矩m通常是根据轴所传递的 功率N和转速n(r/min)来计算。当N的单位为千瓦(kW )时当N的单位为马力(HP )时(2-2-2)m = 7024 扭转时的内力为扭矩T,用截面法求得。画出的内力图称为扭矩图(或T图),如图22-1b所示图22-1圆杆的扭转圆杆扭转切应力与强度条件当应力不超过材料的剪切比例极限rp时,某横截面上任

2、意C点(图22-2 )的切应力公式为式中TC点所在横截面上的扭矩pC点至圆心的距离Lp横截面对圆心的极惯性矩,见表2-2-1等直杆扭转时的截面几何性质。等截面杆的最大切应力发生在Tmax截面(危险截面)的圆周各点(危险点)上。其强度条件为与许用拉应力O 的关系为:T =(0.50.6 )。(塑性材料)或T = (0.5圆杆横截面上的切应力r沿半径呈线性分布,其方向垂直于半径(图2-3-2 )。模截面上的最大切应力在圆 周各点上,其计算公式为式中,:T 为许用扭转切应力,0.6 ) O (脆性材料)圆杆扭转变形与刚度条件在比弹性范围内,圆杆在扭矩T作用下,相中为L的两截面间相对扭转角为(2-2-

3、6)或式中G材料的切变模量单位扭转角公式为Bug rad/m (2-2-S)或=孚告炽 (2-2-9)式中GLp抗扭刚度圆杆上与杆轴距离为P外(图22-2 )的切应变r为(2-2-10)圆杆表面处的最大切应变为发生在其刚度条件为,Tmax 一段内式中,e 为圆杆的许用单位扭转角() /m式中,r 圆杆的半径等截面圆杆的最大单位扭转角圆杆的非弹性扭转讨论圆杆扭转时切应力超过材料的比例极限并进入塑性状态的情况。对于加工硬化材料,如果材料的应max力-应变图为已知(图23-3a ),则杆中任一点处的切应力r就可以确定。位于横截面边缘处应变为r ,其相应的切应力rmax可以从应力-应变图求得。整个横截

4、面上切应力的(图23-3b )与应力-应变图的形状相同。使圆杆产生单位扭转角所必需的扭矩T,可根据静力学方程求得(见图2-2-3b )为圆杆的非弹性扭转图22-3将式(2-2-10)代入式(2-2-13)得式中R =r9max根据式(22-14),可以得到T与e的关系曲线,根据该曲线,可以确定对给定T值的e和Tmax。如果圆杆的材料具有明显的屈服极限rs,则可使应力-应变图理想化,如图22 -4a所示,此材料弹塑性 材料。此时,只要杆中最大应变小于rs时,杆就属于弹性的。当横截面边缘处的应变超过rs时,横截面上 的应力分布如图2-2-4b所示,此图表明屈服开始于边缘,当应变增大时,屈服区例向里

5、边发展。如果材料 的屈服极限为rs,弹塑性边界为Ps =C时,则扭矩为(2-2-15)式中d圆杆的直径当整个横截面都面到屈服时,其应力将接近均匀分布,如图2-3 -4c所示,相应的扭矩为杆的塑性极限 扭矩,其值为(2- 2-16)当扭矩达到此值时,扭矩不再增加而杆将继续变形 杆中最初开始屈服时的弹性极限扭矩T ,由式(22-3 )得比较式(2-2-16 )和式(2-2-17 ),可得塑性极限扭矩与弹性极限扭矩之比为(2-2-18)由此可知,杆中开始屈服后,只要扭矩增大三分之一,就将使杆达到极限承载能力。非圆截面杆的抟转与薄膜比拟等直杆扭转时的应力与变形| |薄膜比拟| |非弹性扭转杆非圆截面杆

6、扭转时,其横截面将产生曲。横截面可以自由翘曲的扭转,称为自由扭转。此时,由于各截 面的翘曲程度相同,故横截面收只在切而没有正奕力。例如,图22-5所示的工钢薄壁杆件,在两端作用 对扭转偶矩,杆的两个翼缘将相对转动,但翼缘的轴线仍为直线,不发生弯曲变形,也不产生正。图22-5自由扭转若由于约束或受力条件的限制,造成杆件各截面的翘曲程度不同时,则横截面上除有切应力外还有正应 力。这种情况称为约束扭转。例如,图2-2-6a,所示的工字钢杆,一端固定,另一端作用扭转力偶矩。在固 定端截面为平面,不能翘曲,但它限制了相邻截面的翘曲,离固定越远,翘曲受到的限制也越小,到自由端 变成了可以自由翘曲。由于相邻

7、两截面的翘曲不同,则引起这两个截面间纵向纤维长度的改变,于是横截面 上产生正应力。又如图2-2-6b抽示两端简支工字钢杆,在跨度中点截面上作用一个扭转力偶矩。两端铰支 座不允许端截面绕杆轴旋转,但可自由翘曲。由于对称,跨度中点截面应保持为平面,离中点截面越远,翘 曲越大。对于象工字钢、槽钢等薄壁杆件,在约束扭转时,横截面上的正应力往往很大刚愎自用库以考虑。 但对于一些袂体杆件,如截面为矩形、椭圆形等杆件,因约束扭转而引起的正应力数值很小,可忽略不计。图2-2 -6约束扭转等直杆扭转时的应力与变形具有任意形状的无限长等截面直杆,在绕扭转时,在与Z轴正交的截面上,要产生切应力rxz和rxz (图

8、22-7 )。为了确定应力和变形,设应力函数(X, Y),使其满足下列各式,即A2 = -2Cr = cs=C1 (对单联域截面,可取C1 =0)IT = JJ园*!y +硬队i-l式中C、C1 常数s沿截面周边上的值AI 多联域时各孔的面积,单联域时,AI=0切应力和应力函数的关系为等直杆扭转时最大切应力为=& (If)单位长度扭转角为白二号 (2-2-20)式中,Jk、Wk为截面抗几何特性,见表2-2-1等直杆扭转时的截面几何性质图2-2-7 等值杆的扭转对于任意实体截面(参见表2-2-2任意实心截面的Jk公式),最大切应力位于或非常接近于最大内切圆 与边界的切点之一(除非在边界的其他点上

9、有引起很高局部应力的尖锐凹角),以及位于边界曲率代数值为 最小的点上。对于凸面,边界曲率为正:对于凹面,边界曲率为负(图22-8 )。最大切应力可近似地用下 式计算,即图22-8任意实体截面1腿=或(2-2-21)式中的C分下列两种情形求得:(1)在曲率为正(截面边界是直或凸的)的点上式中D最大内切圆直径r该点上的边界曲率半径(此时为正)A截面面积(2)在曲率为负(截面边界是凹的)的点上J1+ O.nsiwfl-Vo.23S 血翌方* L I 2r)2r 巧+ 18旅(2-2-23)式中,也为边界切线绕过凹部时所转过的角度,(见图2-2-8 ),其单位为弧度(这里的r为负)而D、r和 A的含义

10、同前。一些任意实体截面的Jh值,见表2-2-2任意实心截面的Jk公式薄膜比拟应用薄膜理论与弹性扭转理论的数学相似性,通过实验确定扭转切应力是比较方便的。用一块均匀薄膜, 张在与截面相似的边界上,然后从薄膜的一侧施加微小的气体压力,使薄膜鼓成曲面,如图2-2-9所示。该 曲面与扭转切应力等有着下述关系,即图2-2-9 薄膜比拟薄膜曲面上任一点的斜率,与截面相应点的扭转切应力的大小成正比。曲面的等高线即这切应力线薄腊鼓起的体积的两倍相当于扭矩。由薄膜比拟可知,一般情况下切应力分布有的规律为实心轴最大扭转切应力,必发生在外周边上,且在最大内切圆切点或其附近,或有凹角处。内外周边上的切应力都是沿周边切

11、线方向作用。在凸角的顶点上切应力为零。非弹性扭转杆当杆的一部分材料的应力超过弹性极限而产生塑性变形时,即在弹塑性变形情况下,如仍引用与前一节 情况相同应力函数,则对于非硬化材料,在塑性区域要满足。由上式可知,在塑性区域内,曲面斜率为一常数。在弹塑性区的交界处,是连续的。当达到极限状态即发生全面塑性变形时,则可由截面边界上筑起具有等倾角为rs的“屋顶”(自然倾斜 表面即砂堆比拟法)。由该“屋顶”与底面所围成的体积即等于塑性极限扭矩的一半。例如,图2-2-10所示边长这2a的方形截面,其应力函数是高为ars的角锥体。当发生全面塑性变形时,其 极限扭矩的一半等于角锥体的体积,其大小等于底面积乘以高度

12、的1/3。因此可得图2-2-10 方形截面的全塑性应力函数曲面表2-2-3常用截面的Os、Ts、Tp和Tp/Ts列出了几种常用的塑性极限扭矩,并与弹性极限扭矩进行比较。 由表看出,若使屈服扩展至整个截面,则杆件的承载能力将大大提高。表2-2-4常用组合截面的Tp列出了某些常用组合截面的塑性极限扭矩近似公式。表中末列出弹性极限据矩, 是因为凹角处很高的应力集中系数对初始屈服有影响。计算空心截面扭杆的塑性极限扭矩时,对于等壁厚的空心扭杆,其极限据矩Tp等于具有外截面边界的实心扭 杆的极限扭矩Tps减去与空心内截面的实心扭杆的极限扭矩MpH即Tp 二Tp-写丑 (2-2-25)薄壁截面杆的自由扭转开

13、口截面|闭口截面|多闭室闭口截面开口截面薄壁截面可分为开口截面和闭口截面。轧制的型钢或挤压成形的型材,如工字钢 、槽钢、角钢或T形、 Z形等为“开口 ”截。这种截面可看成是由一些等宽度的狭矩形组成。狭矩形可能是直的或是弯的,如图2-2-11 所示。在对一个弯的开口狭矩形截面杆的自由扭转进行应力和变形计算时,可用同宽同长的直的狭矩形截面 杆来代替。图2-2-11开口截面单位长度扭有角的变化为式中T扭矩G切变模量Jk自由扭转的截面抗几何特性(2-2-27)其中a截面形状修正系数,见表2-2-5ti 每个狭矩形的厚度或平均厚度 di 每个狭矩形的长度表2-2-5截面形状系数a的平均值截面形状系数工字钢槽钢角钢T型钢Z型钢a1.202顷厂I每个狭矩形长边中点附近的切应力最大切应力式中,tmax为最大厚度。闭口截面闭口截面可分为单闭室和多闭室截面。薄壁管和空心矩形截面杆等属于单闭室截面。它们在自由扭转时, 单位长度扭转角的变化为豆-中心线包围的面积(见图 2-2-12)应力或剪流公式为(2-2-33)由式(2-2-27)和式(2-2-28)的(2-2-34

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论