弱电各系统介绍_第1页
弱电各系统介绍_第2页
弱电各系统介绍_第3页
弱电各系统介绍_第4页
弱电各系统介绍_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、综合布线的材料计算方法RJ-45头的需求量:m=n*4+n*4*15%m:表示RJ-45接头的总需求量n:表示信息点的总量n*4*15%:表示留有的富余信息模块的需求量:m=n+n*3%m:表示信息模块的总需求量n:表示信息点的总量n*3%:表示富余量每层楼用线量:C=0.55*(L+S)+6*nL:本楼层离管理间最远的信息点距离S:本楼层离管理间最近的信息点距离n:本楼层的信息点总数0.55:备用系数6:端接容差在选择线槽时,线槽的截面积=水平线缆面积X31、最长的线距+最短的线距)/2=平均值(平均值+5米)X点数=总长度总长度/305(标准每箱米数)+2箱=总箱数+的数量也可自己定,

2、第一次的话,宁可多备点,不要事后2、每个服务需一条4对非屏蔽双绞线电缆或2芯(62.5/125微米多模)光缆每个通讯间中水平电缆的总数量=(由通讯间提供服务的工作区的数量)*(每一工作区提供的服务的数量)工作区水平布线计算:A:最近信息点距离;B:最远信息点距离;C:每层工作区信息点数量每层所需电缆长度=(A+B)/2*1.1*C总共所需电缆箱数=各层电缆长总和/305米/箱(电子工业出版社综合布线系统工程设计)3、C=0。55(F+N)+6Xn(m)C每个楼层的用线量F为最远信息插座离配线间的距离N为最近的信息插座离配线间的距离n为每层信息插座的数量简单公式:(最长线距+最短的线距)/2*1

3、.1=平均线长平均线长*信息点=需要的线缆总数线缆总数/305=需要多少箱线线数:(最长+最短)/2xl.l+2x楼高箱数:线数x信息点数/305(最远距离+最近距离)/2*1.1+层高)*节点数)/305=线缆箱数。其中:1.1系数是损耗;层高是楼层高度,如果水平线槽走天花板,则必须计算如果是架空地板可以不计;305是1000英尺换算。最长的网线和最短网线的平均值X总的点数,然后再加10的冗余RJ-45头的需求量:m=n*4+n*4*15%m:表示RJ-45接头的总需求量n:表示信息点的总量n*4*15%:表示留有的富余信息模块的需求量:m=n+n*3%m:表示信息模块的总需求量n:表示信息

4、点的总量n*3%:表示富余量每层楼用线量:C=0.55*(L+S)+6*nL:本楼层离管理间最远的信息点距离S:本楼层离管理间最近的信息点距离n:本楼层的信息点总数0.55:备用系数6:端接容差在选择线槽时,线槽的截面积=水平线缆面积x31、最长的线距+最短的线距)/2=平均值(平均值+5米)X点数=总长度总长度/305(标准每箱米数)+2箱=总箱数+的数量也可自己定,第一次的话,宁可多备点,不要事后2、每个服务需一条4对非屏蔽双绞线电缆或2芯(62.5/125微米多模)光缆;每个通讯间中水平电缆的总数量=(由通讯间提供服务的工作区的数量)*(每一工作区提供的服务的数量)工作区水平布线计算:A

5、:最近信息点距离;B:最远信息点距离;C:每层工作区信息点数量每层所需电缆长度=(A+B)/2*1.1*C总共所需电缆箱数=各层电缆长总和/305米/箱(电子工业出版社综合布线系统工程设计)3、C=0。55(F+N)+6Xn(m)C每个楼层的用线量F为最远信息插座离配线间的距离N为最近的信息插座离配线间的距离n为每层信息插座的数量简单公式:(最长线距+最短的线距)/2*1.1=平均线长平均线长*信息点=需要的线缆总数线缆总数/305=需要多少箱线线数:(最长+最短)/2xl.l+2x楼高箱数:线数x信息点数/305(最远距离+最近距离)/2*1.1+层高)*节点数)/305=线缆箱数。其中:1

6、.1系数是损耗;层高是楼层高度,如果水平线槽走天花板,则必须计算;如果是架空地板可以不计;305是1000英尺换算。最长的网线和最短网线的平均值X总的点数,然后再加10的冗余二、全面详解综合布线系统设计要点综合布线系统设计有很多值得注意的地方,这里我们主要介绍综合布线系统的总体规划和设计要求,包括介绍性能和规格等方面的知识,相信您看完本篇文章会学习到很多知识。1总体规划一般来说,国际信息通信标准是随着科学技术的发展,逐步修订、完善的。综合布线系统也是随着新技术的发展和新产品的问世,逐步完善而趋向成熟。我们在设计智能化建筑物PDS期间,要提出并研究近期和长远的需求是非常必要的。目前,国际上各综合

7、布线产品都只提出15年质量保证体系,并没有提出多少年投资保证。为了保护建筑物投资者的利益,我们可采取“总体规划,分布实施,水平布线尽量一步到位”。主干线大多数都设臵在建筑物弱电井,更换或扩充比较省事;水平布线是在建筑物的天花板内或管道里,施工费比初始投资的材料费高。如果更换水平布线,要损坏建筑结构,影响整体美观。因此,我们在设计水平布线,尽量选用档次较高的线缆及连接件,缩短布线周期。2系统设计综合布线是智能大厦建设中的一项新兴技术工程项目,它不完全是建筑工程中的“弱电”工程。智能化建筑是由智能化建筑环境内系统集成中心利用综合布线系统连接和控制“3A”系统组成的。布线系统设计是否合理,直接影响到

8、“3A”的功能。(3A即楼宇自动化一BuildingAutomation、办公自动化一OfficeAutomation、通信自动化一CommunicationAutomation)设计与实现一个合理综合布线系统一般有六个步骤:获取建筑物平面图;分析用户需求;系统结构设计;布线路由设计;绘制布线施工图;编制布线用料清单。星型拓扑结构布线方式,具有多元化的功能,可以使任一子系统单独地布线,每一子系统均为一独立的单元组,更改任一子系统时,均不会影响其它子系统。一个完善确定设计的布线走线系统,其目标是,在既定时间以外,允许在有新需求的集成过程中,不必再去进行水平布线,损坏建筑装饰而影响审美。为了使智能

9、建筑与智能建筑园区的工程设计具体化,根据实际需要,我们将综合布线系统分为三个设计等级:1基本型适用于综合布线系统中配臵标准较低的场合,用铜芯电缆组网。基本型综合布线系统配臵:(1)每个工作区(站)有一个信息插座;(2)每个工作区(站)的配线电缆为一条4对双绞线,引至楼层配线架;(3)完全采用夹接式交接硬件;(4)每个工作区(站)的干线电缆(即楼层配线架至设备间总配线架电线)至少有2对双绞线。2增强型适用于综合布线系统中中等配臵标难的场合,用铜芯电缆组网。增强型综台布线系统配臵:(1)每个工作区(站)有两个以上信息插座;(2)每个工作区(站)的配线电缆均为一条独立的4对双绞线,引至楼层配线架;采

10、用夹接式(110A系列)或接插式(110P系列)交接硬件;(4)每个工作区(站)的干线电缆(即楼层配线架至设备问总配线架)至少有3对双绞线。3综合型适用于综合布线系统中配臵标准较高的场合,用光缆和铜芯电缆混合组网。综合型综合布线系统配登:在基本型和增强型综合布线系统的基础上增设光缆系统;在每个基本型工作区的干线电缆中至少配有2对双绞线;在每个增强型工作区的干线电缆中至少有3对双绞线。综合布线系统应能满足所支持的数据系统的传输速率要求,并应选用相应等级的传输缆线和设备。综合布线系统应能满足所支持的语音、数据、图像系统的传输标准要求。综合布线系统所有设备之间连接端子、塑料绝缘的电缆或、电缆环箍应有

11、色标。不仅各个线对是用颜色识别的,而只线束组也使用同一图表中的色标。这样有利于维护检修。这也是综合布线系统的特点之一。所有基本型、增强型、综合型综合布线系统都能支持语音、数据、图像等系统,能随工程的需要转向更高功能的布线系统。它们之间的主要区别在于:支持语音和数据服务所采用的方式;在移动和重新布局时实施线路管理的灵活性。1基本型综台布线系统的特点是一种富有价格竞争力的综合布线方案,能支持所有语音和数据的应用;应用于语音、语音数据或高速数据;便于技术人员管理;采用气体放电管式过压保护和能够自复的过流保护;能支持多种计算机系统数据的传输。2增强型综合布线系统的特点增强型综合布线系统不仅具有增强功能

12、而且还可提供发展余地。它支持语音和数据应用,并可按需要利用端子板进行管理。(1)每个工作区行二个信息插座,不仅机动灵活,而且功能齐全,(2)任何个信息插座都可提供语音和高速数据应用;按需要可利用端子板进行管理;是一个能为多个数据设备制造部门环境服务的经济有效的综合布线方案采用气体放电管式过压保护和能够自复的过流保护。3综合型综合布线系统的特点综合型综合布线系统的主要特点是引入光缆,可适用于规模较大的建筑物或建筑群,其余特点与基本型或增强型相同。综合布线系统设计要领:1在PDS设计起始阶段,设计人员要作到:评估用户的通信要求和计算机网络要;评估用户楼宇控制设备自动化程度;评估安装设施的实际建筑物

13、或建筑群环境和结构;确定通信、计算机网络、楼宇控制所使用的传输介质。2将初步的系统设汁方案和预算成本通知用户单位。3.在收到最后合同批准书后,完成以下的系统配臵、布局蓝图和文档记录:电缆线路由文档;光缆分配及管理;布局和接合细节;光缆链路,损耗预算;施工许可证;订货信。如同任何一个工程一样,系统设计方案和施工图的详细程度将随工程项目复杂程度而异,并与合同条款、可用资源及工期有关。设计文档一定要齐全,以便能检验指定的PDS设计等级是否符合所规定的标准。而且在验收系统符合全部设计要求之前,必须备有这种设计文档。4应始终确保已完成合同规定的光缆链路一致性测试,而且光缆链路损耗是可接受的。介质及连接硬

14、件的性能规格在结构化布线系统中,布线硬件主要包括:配线架、传输介质、通信插座、插座板、线槽和管道等。1)介质主要有双绞线和光纤,在我国主要采用双绞线与光缆混合使用的方法。光纤主要用于高质量信息传输及主干连接,按信号传送方式可分为多模光纤和单模光纤两种,线径为62.5/125微米。在水平连接上主要使用多模光纤,在垂直主干上主要使用单模光纤。2)接头及插座在每个工作区至少应有两个信息插座,一个用于语音,一个用于数据。插座的管脚组合为:1&2、3&6、4&5、7&8。我国基本上采用北美的结构化布线策略,即使用双绞线十光纤的混合布线方式。双绞线又分为屏蔽线与非屏蔽线两种。屏蔽系统是为了保证在有干扰环境

15、下系统的传输性能。抗干扰性能包括两个方面,即系统抵御外来电磁干扰的能力和系统本身向外发射电磁干扰的能力,对于后者,欧洲通过了电磁兼容性测试标准EMC规范。实现屏蔽的一般方法是在连接硬件外层包上金属屏蔽层以滤除不必要的电磁波。现已有STP及S-STP两种不同结构的屏蔽线供选择。屏蔽系统的屏蔽层应该接地。在频率低于1MHz时,一点接地即可。当频率高于1MHz时,EMC认为最好在多个位置接地。通常的做法是在每隔波长十分之一的长度处接地,且接地线的长度应小于波长的十二分之一。如果接地不良(接地电阻过大、拦地电位不均衡等),就会产生电势差,这样,将构成保证屏蔽系统性能的障碍和隐患。值得注意的是,屏蔽电缆

16、不能决定系统的整体EMC性能。屏蔽系统的整体性取决于系统中最弱的元器伯。如跳接面板、连接器信息口、设备等。因此,若屏蔽线在安装过程中出现袭缝,则构成子屏蔽系统中最危险的环节。机房1、电源容量的选配主控设备的功率统计如下:数字硬盘监控记录主机:350W,6台,计2100W显示器:120W,6台,计720W;摄像机:平均2W,86只,计172W监视器:150W,6台,计900W矩阵主机:180W以上设备功率总计:4072W。这里4072W是有用功率,当有用功率转换成VA数时,还需考虑其功率因数COS屮。一般COS屮的取值为0.650.7,贝U系统VA数为4072三0.7=5817VA根据公安部GA

17、/T367-2001文件的要求,系统总的配电容量需为实际用电量的1.5倍,照此计算5817VA*1.5=8726VA因此,必须配8.8KVA以上的电源才能保证系统的供电,按照UPS的实际规格,我们配置了10KVA的UPS。2、蓄电池的选配根据公安部相关标准的要求,视频系统所配电源需保证系统在市电断电后1小时内能够正常运转。我们仍以视频系统的电源为例来计算。10KVA的电源输出电压标称值为240VDC。故每组至少需配20块12V蓄电池,才能保证其输出电压为240V。下面我们来计算需要的电池容量:10000VAH/(12V*20块)=41.7AH因此,我们需选择65AH的电池来作为后备电池使用。我

18、们可以计算一下20块12V/38AH的电池在市电断电以后可以维持系统运行的时间:12V*65AH*20块*0.7/4072W2.7小时也就是说市电断电后本系统可以继续运行2个多小时,完全满足标准的要求。值班人员可以利用这一段时间从容地进行必要的操作,而不致使硬盘中的数量因突然断电而丢失。光纤跳线浏览次数:约109次光纤供跳线用来做从设备到光纤布线链路的跳接线。有较厚的保护戻,一般用在光端机和终端盒之间光纤跳线供的连接。尾纤又叫猪尾线,只有一端有连接头,而另一端是一根光缆纤芯的断头,通过熔接与其他光缆纤芯相连,常出现在光纤终端盒内,用于连接光缆与光纤收发器(之间还用到耦合器、跳线等)。光纤连接器

19、是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项性能。目录测试光纤跳线的方法光纤跳线特点光纤跳分类测试光纤跳线的方法由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。2004年2月颁布的TIA/TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,

20、分别为:Tier1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性;Tier2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140

21、就是在这基础上发展而来,与此兼容。那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。如何测试光纤链路损耗光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。测试方法A方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如下图上半部分)。设置参考值后,将被测链路接进来(如下图下半部分),进行测试。我们不难发现,

22、每个方向的测试结果中包括光纤和一端的连接器的损耗。因此,方法A是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。测试方法B方法B设置参考值时,只使用了一条光纤跳线(考虑一个方向,如下图上半部分)。设置参考值后,将被测链路接进来(如下图下半部分),进行测试。这种方法的测试结果中,包括光纤链路和两端连接的损耗。因此,方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分。这就是室内光缆的常见例子。细心的读者不难发现,从技术角度讲,测试结果它还包括了额外的光纤跳线(34)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,

23、因为它包括了光缆本身以及电缆两端的连接器。测试方法C方法C设置参考值时,使用三条光纤和两个连接器(单方向,见下图上半部分),其中两个连接器之间的光纤为长度小于1M的光纤跳线(通常为30M),测试时,用被测光纤链路将连接器之间的光纤跳线替换(如下图下半部分)。因此,方法C的测试结果,仅包含光纤的损耗,不包含两端连接器的损耗,而短光纤跳线引入的误差很小,可忽略不计。这种方法,由于两端都不包含连接器的损耗,所以更适合于电信运营商的光纤链路的测试,因为电信的光纤链路通常距离比较长,光纤链路的损耗主要是光纤本身的损耗。而对于室内的应用,通常链路两端都会连接器,所以不建议采用这种方法。当然,对于两端没有连

24、接器的光纤链路来说,此方法是适用的。值得一提的是,如果被测链路两端的连接头不一样,只要在设置参考值时,选用合适的连接器和相应的转接跳线即可。测试方法的局限性和改进标准中虽然规定了建议了三种测试方法。但是值得注意的是,这里有一个大前提,即:被测光纤的接头或连接器和仪表提供的接口必须要一致。除此之外,还有其它一些不尽人意的地方。以方法B为例,当使用方法B时,存在以下几个不足之处:当参考值设置完后,进行实际测试时,需要将测试仪一端的连接光缆断开。千万要记住的是:千万不要断开光源输出端。输出端一旦断开,原来设置的参考值就失效了,必须重新设置基准,否则会严重影响测试的结果。不幸的是,人们往往忽视这一点。

25、即使我们知道要从测试仪测试(输入)端断开连接电缆,仍然要非常小心,尽量避免接头处受到污染或检测器受到损坏。为了测试发送和接收同在一起的双工SFP连接器,从输入端断开的同时,源(输出)端也不得不断开,因而违反了第一条原则。使用方法B时,要求你的测试仪连接器必须和被测光缆的连接器相同。为了克服以上不足,我们介绍一种新的测试方法,它是方法B的改进。改进后,它不仅提供了同样的测试结果而且保证了和测试标准的一致性,同时克服了以上4点不足。改进的测试方法B方法B的简单改进使得我们能够保持原来的精度(每次测量都包括光缆以及两端的接头,同时又避免了上述的缺陷。改进后的方法B,在设置参考时使用两条连接光缆和一个

26、连接适配器,与方法A类似,然而,测试时的连接方式与方法A不同。以测试两端都是MT-RJ连接器的一对光纤为例(仪表提供的接口为SC)。设置基准时,如下图所示。使用了一个双工MT-RJ连接器和四根SCMT-RJ的短跳线。测试时,断开连接器的一端,接入被测光纤,同时引入了额外的一对短测试跳线(MT-RJ一MT-RJ,通常30cm或更短),如下图所示。容易看出,这样测试的结果和方法B测得的结果一样,测试结果包括光缆和两端连接器的损耗(MT-RJMT-RJ短测试跳线的损耗忽略不计)。与测试方法B的一致性改进的方法B和原来的方法B相比,有以下几点好处,并且保持了测试结果的一致性:改进的方法B所得到的损耗测

27、量结果和ANSI/TIA/EIA-526-14A中的方法B是一致的。根据方法B,可以正确地测量链路的损耗,测试时的链路比设置基准时的链路多出两个适配器。使用这种方法测量的损耗是链路中光缆以及链路两端连接器的损耗之和。改进方法B,让我们可以方便测试不同接口类型的链路,而不受仪表本身接口的限制。而且改进的方法B,使得不需要在测试仪器接口处断开光纤,从而减少了由于重复插拔所导致的污染误差和对测试仪器的光接口的磨损。解决了测试带有SFP双工连接器的光纤链路的复杂问题。测试方法变通事实上,实际的被测链路千差万别。上面介绍的测试方法,在有些情况下,就没法进行了。比如:要测试一条两端连接器类型不同的链路(如

28、:一端带LC连接器,另一端为MT-RJ连接器),就无法实现了。这时怎么办呢,其实只要稍做变通就可以了。现在以测试一对一端是LC连接器,另一端为MT-RJ连接器的光纤链路为例(仪表提供的接口为SC),加以说明。这种链路用以上的方法都无法直接测试。于是我们要将这种链路稍加变通,让它变成可以用上述方法测试的链路。最直接的方法就是两端分别加上短跳线,从而变成方法C适用的链路。这里,我们在一端加上LCSC的跳线,另一端加上MT-RJSC的跳线,变通之后,问题就变成测试一对SCSC的链路,显然可以用方法C来测于是,设置参考值时,其连接方式如下图上半部分,这是典型的方法C设置基准的方式。而测试时,只要将变通

29、后的链路当成一个整体,按照方法C的步骤将被测链路接入进来即可。注意到,测试结果中,除了原来的被测链路之外,还包括了两端增加的短跳线的损耗,由于短跳线的损耗很小,可以忽略不计。其实,通过这种变通的方法,我们可以解决绝大多数光纤链路,是一种非常实用的方法。思路都是一样的,那就是通过增加短跳线来转化成方法C的测试问题。细心的读者难免会问,为什么要两端都加跳线呢,只在一端加跳线行不行。回答是肯定的。比如,我们可以LC连接器一端,增加LCMTRJ跳线,因而就变成测试这样一条链路:一端是MTRJ连接器,另一端是MTRJ接头。显然我们可以用方法A来测试。测试结果和原来的链路有一根短跳线的误差,可以忽略不计。

30、归纳起来,不论对于什么类型的链路,我们都可以通过增加跳线的方式,将其转化成方法A或方法C来进行测试。至于增加什么样的跳线,有一个原则要注意,那就是:增加短跳线后,两端的接头或连接器要一致,而且尽可能在一端加跳线,而不是两端都加。另外,要特别提醒的是,只能增加跳线,而不能增加连接器来转化问题,因为连接器引入的损耗太大,不能忽略不计。测试方法的选择光纤链路的测试方法我们介绍了好几种,步骤都是一样的,即先设置参考值,再测试。不同的方法,要选择合适的连接方式设置参考值,并且确保设置参考值后,能方便地将被测链路加进来,测试出准确的损耗。为了便于选择,本人编制了下表,供参考。总而言之,当我们要测试一条光纤链路时,要考虑的三个因素是:两端连接器的个数连接类型是否相同连接类型是否与仪表的接口匹配。根据这个三个因素,参照上表,即可选择合适的测试方法。注意事项相对于双绞线的测试,光纤链路的测试更为复杂一些。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论