




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.2 反比例函数的图象与性质(2)教学目标1.能画出反比例函数 yk x k 为常数, k0的图象 . 2.依据反比例函数 yk x k 为常数, k0的图象探究并懂得其性质 . 3.在自主探究反比例函数的性质的过程中,对称性 . 重点难点让同学初步感知反比例函数的图象的重点:反比例函数 yk x k 为常数, k0的图象的画法及其性质 . 难点:由反比例函数 yk x k 为常数, k0的图象探究出其性质 . 教学设计一预习导学自主预习教材 P7-9 完成以下各题:1.反比例函数 yk x k 为常数, k 0的图象是由两支曲线围成的,这两支曲线称为. 2.当 k 0 时,反比例函数 yk
2、 x的图象与的图象关于 x 轴对称 . 3. 当 k 0 时,反比例函数 yk x的图象由分别在第象限内的两支曲线组成,它们与 x 周、 y 轴都,在每个象限内,函数值 二探究展现(一)合作探究y 随自变量 x 的增大而 . 探究 1:如何画反比例函数y6 的图象?xy6 的图象与 xy6 的图象有什么 x关系?由组长带领组员共同探讨画反比例函数y6 的图象的方法 .引导同学采纳多种 x方式进行自主探究活动:1.可以通过探究函数yy6 与 xy6 之间的关系,画出 xy6 的图象 . x2.可以用画反比例函数6 的图象的方式与步骤进行自主探究其图象 x. y6 5y64y63x2x1-6-5-
3、4-3-2-10123456x-1-2-3-4-5-6引导同学总结归纳:1.当 k 0 时,反比例函数 yk x的图象与 y k x 的图象关于 x 轴对称,2.当 k 0 时,反比例函数 yk x的图象由分别在其次、 四象限内的两支曲线组成,它们与 x 轴、y 轴都不相交, 在每个象限内, 函数值 y 随自变量 x 的增大而增大 . 3.可用描点法画反比例函数yk x(k 0)的图象 . 设计意图: 巩固了反比例函数图象的基本作法,也为后面观看分析归纳出反比例,函数图象的性质增加感性熟悉. 探究 2:反比例函数 yk x k 为常数, k 0的图象的对称性 . 先让同学观看函数y6 与 xy
4、6 的图象,争论沟通它们各自具有什么对称性 x然后总结得出:反比例函数yk x k 为常数, k 0的图象是中心对称图形,其对称中心为坐标原点,其图象仍是轴对称图形,对称轴有两条,分别是一、三象限角平分线(即直线 y=x)和二、四象限角平分线(即直线 y=-x). 探究 3:依据我们已经学过的反比例函数的性质填写下表,并说说 k0 和 k0时图象性质的区分 . 反比例函数k 0 ykk0k0 xk 的符号图象(双曲线)x、y x 的取值范畴 x 0 x 的取值范畴 x 0取值范畴 y 的取值范畴 y 0 y 的取值范畴 y 0位置 第一,三象限内 其次 ,四象限内增减性 每一象限内 ,y 随
5、x 的增大而减小 每一象限内 ,y 随 x 的增大而增大渐近性 反比例函数的图象无限接近于 x,y 轴,但永久达不到 x,y 轴,画图象时 ,要表达出这个特点 . 对称性反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形 . 设计意图: 使同学经受由特别到一般的过程,类争论思想和类比思想 . (二)展现提升1.画出反比例函数y4 的图象 x培育同学的抽象概括才能、 渗透分2.反比例函数 y 1 的图象在第、象限,在每个象限内,函数值 y 随自变量 x2 x的增大而 ,图象关于成中心对称,关于成轴对称 . 3.如反比例函数 y m 3 的图象在其次、四象限,求 m 的取值
6、范畴 . x设计意图 :通过练习准时去巩固同学对反比例函数图象的画法及其性质的懂得及是否能够正确的运用其性质解决简洁问题 . 三学问梳理本节课有什么收成?1.用描点法画反比例函数 yk x(k0)的图象步骤:列表,描点,连线 . 2.反比例函数 yk x的图象性质:图象与 x 轴、y 轴都不相交,当 k0 时,图象在第一、三象限,在每个象限内,函数值 y 随自变量 x 的增大而减小;当 k 0时,图象在其次、四象限,在每个象限内,函数值y 随自变量 x 的增大而增大 . 3.反比例函数 yk x k 为常数, k 0的图象关于原点成中心对称,当 k 0 时,图象关于直线 y=-x 成轴对称,当 k 0 时,图象关于直线 四当堂检测1.画出反比例函数y8 的图象 . xy=x 成轴对称 . 2.在反比例函数y1xk的图象的每一支曲线上,y 随 x 的增大而增大,就k 的值为 . 3已知点( 2,y1),( 3,y2)在 函数y2 的图象上,试比较 xy1,y2的大小 . 五教学反思在整个的设计过程中,始终表达以同学为中心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中国民生银行长沙分行全球校园招聘笔试备考试题及答案解析
- 2025广东广州海珠区沙园街道招聘雇员2人笔试模拟试题及答案解析
- 2026华能(上海)电力检修有限责任公司校园招聘笔试模拟试题及答案解析
- 2025年皮肤科痤疮皮肤护理的注意事项模拟测试卷答案及解析
- 2025江苏南京财经大学招聘工作人员4人笔试模拟试题及答案解析
- 2025河南郑州航空港经济综合实验区公立医疗机构招聘人事代理工作人员36人笔试备考试题及答案解析
- 2025浙江舟山市定海区文化和广电旅游体育局招聘编外用工人员笔试模拟试题及答案解析
- 2026中国葛洲坝集团电力有限责任公司校园招聘笔试参考题库附答案解析
- 2025年急诊科学科心肺复苏操作流程评估模拟试卷答案及解析
- 2025年麻醉科药物应用及剂量把握模拟考试卷答案及解析
- AIGC基础与应用第6章-AIGC造就绘画大师
- 《炼油与化工装置机泵 在线监测系统技术规范》
- 羽毛球竞赛编排知识与方法
- 2023数据标准管理实践
- 非洲水坝施工方案
- Unit 3 Understanding ideas The Road to Success课件 2023-2024学年高中英语外研版选择性必修第一册
- 项目需求分析文档(模板)
- 长阳清江画廊
- 四川2023年专业技术人员公需科目“数字经济与驱动发展”参考答案(通用版)
- 液压泵站使用说明书
- 职工三级安全教育卡模版
评论
0/150
提交评论