2022年江苏省无锡江阴市要塞片中考数学五模试卷含解析及点睛_第1页
2022年江苏省无锡江阴市要塞片中考数学五模试卷含解析及点睛_第2页
2022年江苏省无锡江阴市要塞片中考数学五模试卷含解析及点睛_第3页
2022年江苏省无锡江阴市要塞片中考数学五模试卷含解析及点睛_第4页
2022年江苏省无锡江阴市要塞片中考数学五模试卷含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题

2、目要求的)1如图,在等腰直角三角形ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是( )ABCD2如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明AOBAOB的依据是()ASASBSSSCAASDASA3如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是21,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A0.2B0.25C0.4D0.54有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁

3、在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC5如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D116如图,在菱形纸片ABCD中,AB=4,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD7若分式有意义,则的取值范围是( )A;B;C;D.8如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角是45,旗杆低

4、端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:) A30.6米B32.1 米C37.9米D39.4米9如图,将ABC绕点C(0,-1)旋转180得到ABC,设点A的坐标为(a,b),则点A的坐标为( )A(-a,-b)B(-a,-b-1)C(-a,-b+1)D(-a,-b-2)10如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D1011一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是( )ABCD12叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长

5、约0.00005米其中,0.00005用科学记数法表示为()A0.5104B5104C5105D50103二、填空题:(本大题共6个小题,每小题4分,共24分)13因式分解:3a36a2b+3ab2_14化简3m2(mn)的结果为_15如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为_m. 16计算:_17化简: =_18如图,ABCD,1=62,FG平分EFD,则2= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,ACB和ECD都是等腰直角三角形,ACBECD90

6、,D为AB边上一点求证:ACEBCD;若AD5,BD12,求DE的长20(6分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_,(2)当点P在线段MN上运动,且使PA2PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)21(6分)已知:如图,在平面直角坐标系中,O为坐标原点,OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BCAB交直线y=-m(m54)于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD(1)求证:AB

7、CAOD(2)设ACD的面积为s,求s关于m的函数关系式(3)若四边形ABCD恰有一组对边平行,求m的值 22(8分)P是O内一点,过点P作O的任意一条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于O的“幂值”或“幂值”的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,

8、若在直线y=x+b上存在点P,使得点P关于C的“幂值”为6,请直接写出b的取值范围_23(8分)计算:2tan45-(-)-24(10分)如图所示,在ABC中,BO、CO是角平分线ABC50,ACB60,求BOC的度数,并说明理由题(1)中,如将“ABC50,ACB60”改为“A70”,求BOC的度数若An,求BOC的度数25(10分)在ABC中,AB=BC=2,ABC=120,将ABC绕着点B顺时针旋转角a(0a90)得到A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论(2)如图2,当a=

9、30时,试判断四边形BC1DA的形状,并证明(3)在(2)的条件下,求线段DE的长度26(12分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:收集数据 从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min): 30 60 81 50 40 110 130 146 90 100 60 81 120 140 70 81 10 20 100 81整理数据 按如下分段整理样本数据并

10、补全表格:课外阅读时间(min)等级DCBA人数38分析数据 补全下列表格中的统计量:平均数中位数众数80得出结论 (1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ; (2)如果该校现有学生400人,估计等级为“”的学生有多少名? (3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年 (按52周计算)平均阅读多少本课外书?27(12分)计算:(1)(2)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直

11、角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A2、B【解析】由作法易得OD=OD,OC=OC,CD=CD,根据SSS可得到三角形全等【详解】由作法易得ODOD,OCOC,CDCD,依据SSS可判定CODCOD,故选:B【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理3、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面

12、积为1,则针孔扎到小正方形(阴影部分)的概率是0.1【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是;故选:B【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率4、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC

13、,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.5、A【解析】分析:根据多边形的内角和公式及外角的特征计算详解:多边形的外角和是360,根据题意得:110(n-2)=3360解得n=1故选A点睛:本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决6、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE=1,HDE=60,BCD是等边三角形,即可求DH的长,HE的长,AE的长,N

14、E的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE四边形ABCD是菱形,AB=4,DAB=60,AB=BC=CD=AD=4,DAB=DCB=60,DCABHDE=DAB=60,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=,AEGF,AF=EFCD=BC,DCB=60BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BEC=90在RtBEF中,EF1=BE1+BF1=11+(AB-EF)1EF=由

15、折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键7、B【解析】分式的分母不为零,即x-21【详解】分式有意义,x-21,.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零8、D【解析】解:延长AB交DC于H,作EGAB于G,如图所示,则GH=DE=15米,EG=DH,梯坎坡度i=1:,BH:CH=1:,设BH=x米,则CH=x米,在RtBCH中,BC=12米,由勾股定理得:

16、,解得:x=6,BH=6米,CH=米,BG=GHBH=156=9(米),EG=DH=CH+CD=+20(米),=45,EAG=9045=45,AEG是等腰直角三角形,AG=EG=+20(米),AB=AG+BG=+20+939.4(米)故选D9、D【解析】设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可【详解】根据题意,点A、A关于点C对称,设点A的坐标是(x,y),则=0,=-1,解得x=-a,y=-b-2,点A的坐标是(-a,-b-2)故选D【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A关于点C成中心对称是解题的关键10、

17、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=()2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图11、B【解析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2(|k|)=1故选B【点睛】主要考查了反比例函数中k的几何意义,即过

18、双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|12、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、3a(ab)1【解析】首先提取公因式3a,再利用完全平方公式分解即可.【详解】3a36a1b+3

19、ab1,3a(a11ab+b1),3a(ab)1故答案为:3a(ab)1【点睛】此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.14、m+2n【解析】分析:先去括号,再合并同类项即可得详解:原式=3m-2m+2n=m+2n,故答案为:m+2n点睛:本题主要考查整式的加减,解题的关键是掌握去括号与合并同类项的法则15、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可解:同一时刻物高与影长成正比例设旗杆的高是xm1.6:1.2=x:9x=1即旗杆的高是1米故答案为

20、1考点:相似三角形的应用16、【解析】原式= =.故答案为:.17、【解析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可【详解】原式,故答案为【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键18、31【解析】试题分析:由ABCD,根据平行线的性质得1=EFD=62,然后根据角平分线的定义即可得到2的度数ABCD,1=EFD=62,FG平分EFD,2=12EFD=1262=31故答案是31考点:平行线的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2)13【解析】(1)先根据同角的余角相等得到ACE=

21、BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,EAC=B=45,即可证得AED是直角三角形,再利用勾股定理即可求出DE的长【详解】(1)ACB和ECD都是等腰直角三角形AC=BC,EC=DC,ACB=ECD=90ACE=DCE-DCA,BCD=ACB-DCAACE=BCDACEBCD(SAS);(2)ACB和ECD都是等腰直角三角形BAC=B=45ACEBCDAE=BD=12,EAC=B=45EAD=EAC+BAC=90,EAD是直角三角形【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.20、(1);(2)见解析

22、.【解析】(1)根据勾股定理即可得到结论;(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果【详解】(1);(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P【点睛】本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键21、(1)证明详见解析;(2)S=56(m+1)2+152(m54);(2)2或1【解析】试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明ABCAOD;(2)过点B作直线BE直线y=m于E,作AFBE于F,如图,证明RtABFRtBCE,利用相似比可得BC=53

23、(m+1),再在RtACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后证明AOBACD,利用相似的性质得SAOBSACD=(ABAC)2,而SAOB=152,于是可得S=56(m+1)2+152(m54);(2)作BHy轴于H,如图,分类讨论:当ABCD时,则ACD=CAB,由AOBACD得ACD=AOB,所以CAB=AOB,利用三角函数得到tanAOB=2,tanACB=ABBC=3m+1,所以3m+1=2;当ADBC,则5=ACB,由AOBACD得到4=5,则ACB=4,根据三角函数定义得到tan4=34,tanACB=ABBC=3m+1,则3m+1=34,然后分

24、别解关于m的方程即可得到m的值试题解析:(1)证明:A(0,5),B(2,1),AB=32+(5-1)2=5,AB=OA,ABBC,ABC=90,在RtABC和RtAOD中,AB=AOAC=AD,RtABCRtAOD;(2)解:过点B作直线BE直线y=m于E,作AFBE于F,如图,1+2=90,1+2=90,2=2,RtABFRtBCE,ABBC=AFBE,即5BC=3m+1,BC=53(m+1),在RtACB中,AC2=AB2+BC2=25+259(m+1)2,ABCAOD,BAC=OAD,即4+OAC=OAC+5,4=5,而AO=AB,AD=AC,AOBACD,SAOBSACD=(ABAC

25、)2=2525+259(m+1)2,而SAOB=1252=152,S=56(m+1)2+152(m54);(2)作BHy轴于H,如图,当ABCD时,则ACD=CAB,而AOBACD,ACD=AOB,CAB=AOB,而tanAOB=BHOH=2,tanACB=ABBC=553(m+1)=3m+1,3m+1=2,解得m=1;当ADBC,则5=ACB,而AOBACD,4=5,ACB=4,而tan4=BHAH=34,tanACB=ABBC=3m+1,3m+1=34,解得m=2综上所述,m的值为2或1考点:相似形综合题22、(1)20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明见解析;(2)

26、点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP,连接AA、BB先证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(2)连接OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标

27、,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中,由勾股定理得:PB=2,PA=PB=2,O的“幂值”=22=20,故答案为:20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,点P关于O的“幂值”为定值;(

28、2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,AP=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b,直线CP的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题综合性质较强,考查了新定义题,

29、解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键23、2-【解析】先求三角函数,再根据实数混合运算法计算.【详解】解:原式=21-1-=1+1-=2-【点睛】此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.24、(1)125;(2)125;(3)BOC=90+n【解析】如图,由BO、CO是角平分线得ABC=21,ACB=22,再利用三角形内角和得到ABC+ACB+A=180,则21+22+A=180,接着再根据三角形内角和得到1+2+BOC=180,利用等式的性质进行变换可得BOC=90+A,然后根据此结论分别解决(1)、(2)、(3)【详解】如图,BO、CO是角平分线,ABC=21,ACB=22,ABC+ACB+A=180,21+22+A=180,1+2+BOC=180,21+22+2BOC=360,2BOCA=180,BOC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论