2022年黑龙江省大庆市第五十五中学数学九年级第一学期期末质量检测模拟试题含解析_第1页
2022年黑龙江省大庆市第五十五中学数学九年级第一学期期末质量检测模拟试题含解析_第2页
2022年黑龙江省大庆市第五十五中学数学九年级第一学期期末质量检测模拟试题含解析_第3页
2022年黑龙江省大庆市第五十五中学数学九年级第一学期期末质量检测模拟试题含解析_第4页
2022年黑龙江省大庆市第五十五中学数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为( )ABCD2若反比例函数y(k0)的图象经过(2,3)

2、,则k的值为()A5B5C6D63在ABC中,A=120,AB=4,AC=2,则sinB的值是()ABCD4如图,小红同学要用纸板制作一个高4cm,底面周长是6cm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )A12cm2B15cm2C18cm2D24cm25一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)( )A4.64海里B5.49海里C6.12海里D6.21海里6二次函数y = -2(x + 1)2+5的顶点坐标是( )

3、A-1B5C(1, 5)D(-1, 5)7下列一元二次方程中,有两个不相等的实数根的是()ABCD82019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表下列关于40名同学每天做书面家庭作业的时间说法中,错误的是( )书面家庭作业时间(分钟)708090100110学生人数(人)472072A众数是90分钟B估计全校每天做书面家庭作业的平均时间是89分钟C中位数是90分钟D估计全校每天做书面家庭作业的时间超过90分钟的有9人9如图,将AB

4、C绕点A按逆时针方向旋转100,得到AB1C1,若点B1在线段BC的延长线上,则BB1C1的大小为( )A70B80C84D8610若,则( )ABC1D11小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数yax22a2x+1的图象,则()Al1为x轴,l3为y轴Bl2为x轴,l3为y轴Cl1为x轴,l4为y轴Dl2为x轴,l4为y轴12如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为( )A9B12C18D24二、填空题(每题4分,共24分)13如图,O的半径为2,

5、正八边形ABCDEFGH内接于O,对角线CE、DF相交于点M,则MEF的面积是_14如图,D是反比例函数(k0)的图象上一点,过D作DEx轴于E,DCy轴于C,一次函数yx+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_15把函数y2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_16在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同随机摸出一只球记下颜色后放回,不断重复上述实验,统计数据如下:摸球的次数n10020030050080010003000摸到白球的次数m6512417

6、83024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601共有白球_只17某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_18已知一次函数y1x+m的图象如图所示,反比例函数y2,当x0时,y2随x的增大而_(填“增大”或“减小”)三、解答题(共78分)19(8分)如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFE=B(1)求证:ADFDEC;(2)若AB=8,AD=6,AF=4,求AE的长20(8分)探究问题:方法感悟:如图,在正方

7、形ABCD中,点E,F分别为DC,BC边上的点,且满足EAF=45,连接EF,求证DE+BF=EF感悟解题方法,并完成下列填空:将ADE绕点A顺时针旋转90得到ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE, 1=2,ABG=D=90,ABG+ABF=90+90=180,因此,点G,B,F在同一条直线上EAF=45 2+3=BAD-EAF=90-45=451=2, 1+3=45即GAF=_又AG=AE,AF=AFGAF_=EF,故DE+BF=EF方法迁移:如图,将沿斜边翻折得到ADC,点E,F分别为DC,BC边上的点,且EAF=DAB试猜想DE,BF,EF之间有何数量关系,并证

8、明你的猜想问题拓展:如图,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当B与D满足什么关系时,可使得DE+BF=EF请直接写出你的猜想(不必说明理由)21(8分)如图,的直径垂直于弦,垂足为,为延长线上一点,且(1)求证:为的切线;(2)若,求的半径22(10分)解下列方程(1)x2+4x1=0(2)(y+2)2=(3y1)223(10分)如图,在 RtABC 中,C=90,AD 平分BAC 交 BC 于点 D,O 为 AB 上一点,经过点 A、D 的O 分别交 AB、AC 于点 E、F,(1)求证:BC 是O 切线;(2)设 AB=m,AF=n,试用含 m、n

9、的代数式表示线段 AD 的长24(10分)如图,在菱形ABCD中,对角线AC,BD交于点O,AEBC交CB延长线于E,CFAE交AD延长线于点F(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长 25(12分)若关于x的一元二次方程(m+1)x22x10有两个不相等的实数根,(1)求m的取值范围;(2)若x1是方程的一个根,求m的值和另一个根26某超市销售一种饮料, 每瓶进价为元,当每瓶售价元时,日均销售量瓶.经市场调查表明,每瓶售价每增加元,日均销售量减少瓶.(1)当每瓶售价为元时,日均销售量为 瓶;(2)当每瓶售价为多少元时,所得日均总利润为元;(3)当每瓶

10、售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?参考答案一、选择题(每题4分,共48分)1、B【解析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案【详解】解:小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,小明选择到甲社区参加实践活动的可能性为:故选:B【点睛】本题考查概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比2、C【分析】反比例函数图象上的点(x,y)的横纵坐标的积是定值k,依据xy=k即可得出结论【详解】解:反比例函数y(k0)的图象经过(2,3),k236,故选:C【点睛】本题主要考查了反比例

11、函数图象上点的坐标特征,熟练掌握是解题的关键.3、B【解析】试题解析:延长BA过点C作CDBA延长线于点D,CAB=120,DAC=60,ACD=30,AB=4,AC=2,AD=1,CD=,BD=5,BC=2,sinB=故选B4、B【解析】试题分析:底面周长是6,底面圆的半径为3cm,高为4cm,母线长5cm,根据圆锥侧面积=底面周长母线长,可得S=65=15cm1故选B考点:圆锥侧面积5、B【解析】根据题意画出图如图所示:作BDAC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,RtABD中,根据勾股定理得AD=DE=x,AB=BE=CE=2x,由A

12、C=AD+DE+EC=2x+2x=30,解之即可得出答案.【详解】根据题意画出图如图所示:作BDAC,取BE=CE,AC=30,CAB=30ACB=15,ABC=135,又BE=CE,ACB=EBC=15,ABE=120,又CAB=30BA=BE,AD=DE,设BD=x,在RtABD中,AD=DE=x,AB=BE=CE=2x,AC=AD+DE+EC=2x+2x=30,x=5.49,故答案选:B.【点睛】考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.6、D【解析】直接利用顶点式的特点写出顶点坐标【详解】因为y=2(x+1)2-5是抛物

13、线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(-1,5)故选:D【点睛】主要考查了求抛物线的顶点坐标的方法,熟练掌握顶点式的特点是解题的关键.7、B【分析】先将各选项一元二次方程化为一般式,再计算判别式即得【详解】A选项中,则,则,有两个相等的实数根,不符合题意;B选项可化为,则,则,有两个不相等的实数根,符合题意;C选项可化为,则,则,无实数根,不符合题意;D选项可化为,则,则,无实数根,不符合题意故选:B【点睛】本题考查了一元二次方程根的判别式,解题关键是熟知:判别式时,一元二次方程有两个不相等的实数根;判别式时,一元二次方程有两个相等的实数根;判别式时,一元二次方程无实数根8、D【分

14、析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即90,正确;C、平均时间为:(70480790201008110)89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有819人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单9、B【分析】由旋转的性质可知BAB1C1,ABAB1,由等腰三角形的性质和三角形的内角和定理可求得

15、BBB1AAB1C140,从而可求得BB1C180.【详解】由旋转的性质可知:BAB1C1,ABAB1,BAB1100.ABAB1,BAB1100,BBB1A40.AB1C140.BB1C1BB1A+AB1C140+4080.故选B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到ABB1为等腰三角形是解题的关键.10、D【分析】令=k,则x=2k,y=3k,z=4k,再代入分式进行计算即可【详解】解:令=k,则x=2k,y=3k,z=4k,故选:D【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代

16、入待求的分式化简即可11、D【分析】根据抛物线的开口向下,可得a0,求出对称轴为:直线x=a,则可确定l4为y轴,再根据图象与y轴交点,可得出l2为x轴,即可得出答案【详解】解:抛物线的开口向下,a0,yax22a2x+1,对称轴为:直线x=a0,令x=0,则y=1,抛物线与y轴的正半轴相交,l2为x轴,l4为y轴故选:D【点睛】本题考查了二次函数的性质,开口方向由a确定,与y轴的交点由c确定,左同右异确定b的符号12、D【分析】根据位似图形的性质,再结合点A与点的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:ABC与是以坐标原点O为位似中心的位似图形

17、,且A为的中心,ABC与的相似比为:1:2;位似图形的面积比等于相似比的平方,的面积等于4倍的ABC的面积,即.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.二、填空题(每题4分,共24分)13、2【分析】设OE交DF于N,由正八边形的性质得出DEFE,EOF45,由垂径定理得出OEFOFEOED,OEDF,得出ONF是等腰直角三角形,因此ONFNOF,OFM45,得出ENOEOM2,证出EMN是等腰直角三角形,得出MNEN,得出MFOE2,由三角形面积公式即可得出结果【详解】解:设OE交DF于N,如图所示:正八边形

18、ABCDEFGH内接于O,DEFE,EOF45,OEFOFEOED,OEDF,ONF是等腰直角三角形,ONFNOF,OFM45,ENOEOM2,OEFOFEOED67.5,CEDDFE67.54522.5,MEN45,EMN是等腰直角三角形,MNEN,MFMN+FNON+ENOE2,MEF的面积MFEN2(2)2;故答案为:2【点睛】本题考查的是圆的综合,难度系数较高,解题关键是根据正八边形的性质得出每个角的度数.14、-1【详解】解:的图象经过点C,C(0,1),将点C代入一次函数y=-x+m中,得m=1,y=-x+1,令y=0得x=1,A(1,0),SAOC=OAOC=1,四边形DCAE的

19、面积为4,S矩形OCDE=4-1=1,k=-1故答案为:-115、y1(x3)11【分析】利用二次函数平移规律即可求出结论【详解】解:由函数y1x1的图象先向右平移3个单位长度,再向下平移1个单位长度得到新函数的图象,得新函数的表达式是y1(x3)11,故答案为y1(x3)11【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键16、30【分析】根据利用频率估计概率得到摸到白球的概率为60%,然后根据概率公式计算n的值【详解】白球的个数=只故答案为:30【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆

20、动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率17、4个小支干【分析】设每个支干长出x个小支干,根据主干、支干和小分支的总数是21,即可得出关于x的一元二次方程,解之取其正值即可得出结论【详解】解:设每个支干长出x个小支干,根据题意得:,解得:舍去,故答案为4个小支干【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键18、减小【分析】根据一次函数图象与y轴交点可得m2,进而可得2-m0,再根据反比例函数图象的性质可得答案【详解】根据一次函数y1x+m的图象可得m2,2m0,反比例函数y2的图象在一,三象限,当x0时,y2随x的增大而减

21、小,故答案为:减小【点睛】此题主要考查了反比例函数的性质,以及一次函数的性质,关键是正确判断出m的取值范围三、解答题(共78分)19、(1)见解析(2)6【分析】(1)利用对应两角相等,证明两个三角形相似ADFDEC.(2)利用ADFDEC,可以求出线段DE的长度;然后在在RtADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:四边形ABCD是平行四边形,ABCD,ADBCC+B=110,ADF=DECAFD+AFE=110,AFE=B,AFD=C在ADF与DEC中,AFD=C,ADF=DEC,ADFDEC(2)四边形ABCD是平行四边形,CD=AB=1由(1)知ADFDEC,在

22、RtADE中,由勾股定理得:20、EAF、EAF、GF;DE+BF=EF;当B与D互补时,可使得DE+BF=EF【分析】(1)根据正方形性质填空;(2)假设BAD的度数为,将ADE绕点A顺时针旋转得到ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE, 1=2,ABG=D=90,结合正方形性质可得DE+BF=EF. 根据题意可得,当B与D互补时,可使得DE+BF=EF【详解】EAF、EAF、GFDE+BF=EF,理由如下:假设BAD的度数为,将ADE绕点A顺时针旋转得到ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE, 1=2,ABG=D=90,ABG+ABF=90+

23、90=180,因此,点G,B,F在同一条直线上EAF=2+3=BAD-EAF=1=2, 1+3=即GAF=EAF又AG=AE,AF=AFGAFEAFGF=EF,又GF=BG+BF=DE+BF DE+BF=EF当B与D互补时,可使得DE+BF=EF【点睛】正方形性质综合运用.21、(1)见解析;(2)【分析】(1)连接OB,根据圆周角定理证得CBD=90,然后根据等边对等角以及等量代换,证得OBF=90即可证得;(2)首先利用垂径定理求得BE的长,根据勾股定理求得圆的半径【详解】(1)连接OBCD是直径,CBD=90,又OB=OD,OBD=D,又CBF=D,CBF=OBD,CBF+OBC=OBD

24、+OBC,OBF=CBD=90,即OBBF,FB是圆的切线;(2)CD是圆的直径,CDAB,设圆的半径是R,在直角OEB中,根据勾股定理得:,解得:【点睛】本题考查了切线的判定,圆周角定理,勾股定理,熟练掌握切线的判定定理是解题的关键22、 (1) x1=2+,x2=2;(2) y1=,y2=【解析】(1)把常数项1移项后,在左右两边同时加上4配方求解(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】(1)移项可得:x2+4x=1,两边加4可得:x2+4x+4=4+1,配方可得:(x+2)2=5,两边开方可得:x+2=,x1=2+,x2=2;(2)移项可得:(y+2)2

25、(3y1)2=0,分解因式可得:(y+2+3y1)(y+23y+1)=0,即(4y+1)(32y)=0,4y+1=0或32y=0,y1=,x2=【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解题的关键23、(1)见解析;(2)【分析】(1)连接OD,由AD为角平分线得到BAD=CAD,再由等边对等角得到OAD=ODA,等量代换得到ODA=CAD,进而得到ODAC,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,结合角度的运算得出CDF=DAF,进而得到AFDADB,结合BADDAF得到ABDADF,由相似得比例,即可表示出AD;【详解】(1)证明

26、:如图,连接OD,则OD为圆O的半径,AD 平分BAC,BAD=CAD,OD=OA,OAD=ODA,ODA=CAD,ODAC,ODC=C=90即ODBC,BC 是O 切线(2)连接DF,OF,由(1)知BC为圆O的切线,ODC=90,ODF+CDF=90,ODF=90-CDF,OD=OF,ODF=OFD=,又DAF=,ODF=CDF=DAF又CDF+CFD=90,DAF+CDA=90,CDACFD,AFDADB,BADDAF,ABDADF,则 AB=m,AF=n,【点睛】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键24、(1)见解析;(2)OE=25【解析】(1)根据菱形的性质得到ADBC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据勾股定理得到BE=1,AC=45,然后根据直角三角形斜边的中线性质可得到结论【详解】(1)证明:菱形ABCD,ADBCC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论