2023届河北省邢台八中学数学九上期末达标测试试题含解析_第1页
2023届河北省邢台八中学数学九上期末达标测试试题含解析_第2页
2023届河北省邢台八中学数学九上期末达标测试试题含解析_第3页
2023届河北省邢台八中学数学九上期末达标测试试题含解析_第4页
2023届河北省邢台八中学数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1如图,ABC 中,点 D 为边 BC 的点,点 E、F 分别是边 AB、AC 上两点,且 EFBC,若 AE:EBm,BD:DCn,则( )A若 m1,n1,则 2SAEFSABDB若 m1,n1,则 2SAEFSABDC若 m1,n1,则 2SAEFSABDD若 m1,n1,则 2SAEFSAB

2、D2在数轴上表示不等式2x4,正确的是( )ABCD3二次函数中与的部分对应值如下表所示,则下列结论错误的是( )AB当时,的值随值的增大而减小C当时,D方程有两个不相等的实数根4如图,在ABC中,AB18,BC15,cosB,DEAB,EFAB,若,则BE长为()A7.5B9C10D55二次函数的图象如图所示,其对称轴为,有下列结论:;对任意的实数,都有,其中正确的是()ABCD6已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为( )A65B60C75D707对于反比例函数y=,下列说法正确的是()A图象经过点(1,1)B图象关于y轴对称C图象位于第二、四象限D当x0时,y

3、随x的增大而减小8一条排水管的截面如图所示,已知排水管的半径OB10,水面宽AB16,则截面圆心O到水面的距离OC是( )A4B5C6D69抛物线y=(x+2)2-3的对称轴是()A直线 x=2B直线x=-2C直线x=-3D直线x=310如图,O中,点D,A分别在劣弧BC和优弧BC上,BDC=130,则BOC=()A120B110C105D10011对于题目“抛物线l1:(1x2)与直线l2:ym(m为整数)只有一个交点,确定m的值”;甲的结果是m1或m2;乙的结果是m4,则()A只有甲的结果正确B只有乙的结果正确C甲、乙的结果合起来才正确D甲、乙的结果合起来也不正确12如图,RtABC中,C

4、=90,AC=3,BC=1分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1则S1S2+S3+S1等于()A1B6C8D12二、填空题(每题4分,共24分)13反比例函数的图象在第 象限14b和2的比例中项是4,则b_15ABCD的两条对角线AC、BD相交于O,现从下列条件:ACBDAB=BCAC=BD ABD=CBD中随机取一个作为条件,可推出ABCD是菱形的概率是_16若代数式有意义,则的取值范围是_17已知和时,多项式的值相等,则m的值等于 _ 18一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是个红珠

5、子,个白珠子和个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续次摸出的都是红珠子的情况下,第次摸出红珠子的概率是_三、解答题(共78分)19(8分)如图,无人机在空中处测得地面、两点的俯角分别为60、45,如果无人机距地面高度米,点、在同水平直线上,求、两点间的距离(结果保留根号)20(8分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格已知某位考生会答A、B两题,试求这位考生合格的概率21(8分)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标(2)动点M

6、从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒当t为何值时,四边形OMPN为矩形当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由22(10分)如图1 ,已知平行四边形,是的角平分线,交于点(1)求证:(2)如图2所示,点是平行四边形的边所在直线上一点,若,且, ,求的面积23(10分)已知矩形的周长为1(1)当该矩形的面积为200时,求它的边长;(2)请表示出这个矩形的面积与其一边长的关系,并求

7、出当矩形面积取得最大值时,矩形的边长24(10分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD3m,标杆与旗杆的水平距离BD15m,人的眼睛与地面的高度EF1.6m,人与标杆CD的水平距离DF2m,求旗杆AB的高度25(12分)空间任意选定一点,以点为端点,作三条互相垂直的射线,这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系将相邻三个面的面积记为,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面

8、与轴垂直,所在的面与轴垂直,如图1所示若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作这样我们就可用每一个有序数组表示一种几何体的码放方式 (1)有序数组所对应的码放的几何体是_;ABCD(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(_,_,_),组成这个几何体的单位长方体的个数为_个(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若

9、干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,表示)(4)当,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(_,_, _),此时求出的这个几何体表面积的大小为_(缝隙不计)26如图,一次函数ykx+b与反比例函数y的图象交于A(2,3),B(3,n)两点(1)求反比例函数的解析式;(2)

10、过B点作BCx轴,垂足为C,若P是反比例函数图象上的一点,连接PC,PB,求当PCB的面积等于5时点P的坐标参考答案一、选择题(每题4分,共48分)1、D【分析】根据相似三角形的判定与性质,得出,从而建立等式关系,得出,然后再逐一分析四个选项,即可得出正确答案 .【详解】解:EFBC,若AE:EBm,BD:DC=n,AEFABC,当m=1,n=1,即当E为AB中点,D为BC中点时,A.当m1,n1时,SAEF与SABD同时增大,则或,即2或2,故A错误;B.当m1,n 1,SAEF增大而SABD减小,则,即2,故B错误;C.m1,n1,SAEF与SABD同时减小,则或,即2或2,故C错误; D

11、.m1,n1,SAEF减小而SABD增大,则,即2,故D正确 .故选D .【点睛】本题主要考查了相似三角形的判定与性质, 熟练掌握相似三角形的性质是解答本题的关键 .2、A【分析】根据不等式的解集在数轴上表示出来即可【详解】解:在数轴上表示不等式2x4的解集为:故选:A【点睛】此题主要考查不等式解集的表示,解题的关键是熟知不等式解集的表示方法3、B【分析】根据表中各对应点的特征和抛物线的对称性求出抛物线的解析式即可判断.得出c=3,抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下,【详解】解:由题意得出:,解得,抛物线的解析式为:抛物线的对称轴为x=1.5,顶点坐标为(1,5)

12、,抛物线开口向下a=-10,选项A正确;当时,的值先随值的增大而增大,后随随值的增大而增大,选项B错误;当时,的值先随值的增大而增大,因此当x0时,选项C正确;原方程可化为,有两个不相等的实数根,选项D正确.故答案为B.【点睛】本题考查的知识点是二次函数的图象与性质,根据题目得出抛物线解析式是解题的关键.4、C【分析】先设DEx,然后根据已知条件分别用x表示AF、BF、BE的长,由DEAB可知,进而可求出x的值和BE的长【详解】解:设DEx,则AF2x,BF182x,EFAB,EFB90,cosB,BE(182x),DEAB,x6,BE(1812)10,故选:C【点睛】本题主要考查了三角形的综

13、合应用,根据平行线得到相关线段比例是解题关键5、B【分析】根据二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系逐个判断即可【详解】抛物线的开口向下对称轴为,异号,则抛物线与y轴的交点在y轴的上方,则正确由图象可知,时,即则,错误由对称性可知,和的函数值相等则时,即,错误可化为关于m的一元二次方程的根的判别式则二次函数的图象特征:抛物线的开口向下,与x轴只有一个交点因此,即,从而正确综上,正确的是故选:B【点睛】本题考查了二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系,熟练掌握函数的图象与性质是解题关键6、A【分析】利用勾股定理易

14、得圆锥的母线长,圆锥的侧面积底面半径母线长,把相应数值代入即可求解【详解】圆锥的高为12,底面圆的半径为5,圆锥的母线长为:13,圆锥的侧面展开图的面积为:13565,故选:A【点睛】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键7、D【解析】A选项:1(-1)=-11,点(1,-1)不在反比例函数y=的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:k=10,图象位于一、三象限,故本选项错误;D选项:k=10,当x0时,y随x的增大而减小,故是正确的故选B8、D【解析】试题解析:OCAB,OC过圆心O点, 在中,由勾股定理得: 故选

15、D.点睛:垂直于弦的直径平分弦并且平分弦所对的两条弧.9、B【解析】试题解析:在抛物线顶点式方程中,抛物线的对称轴方程为x=h, 抛物线的对称轴是直线x=-2,故选B.10、D【分析】根据圆内接四边形的性质,对角互补可知,D+BAC=180,求出D,再利用圆周角定理即可得出【详解】解:四边形ABDC为圆内接四边形A+BDC=180BDC=130A=50BOC=2A=100故选:D【点睛】本题考查了圆内接四边形的性质,圆周角定理,掌握圆内接四边形的性质是解题的关键11、C【分析】画出抛物线l1:y(x1)2+4(1x2)的图象,根据图象即可判断【详解】解:由抛物线l1:y(x1)2+4(1x2)

16、可知抛物线开口向下,对称轴为直线x1,顶点为(1,4),如图所示:m为整数,由图象可知,当m1或m2或m4时,抛物线l1:y(x1)2+4(1x2)与直线l2:ym(m为整数)只有一个交点,甲、乙的结果合在一起正确,故选:C【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键12、B【解析】本题先根据正方形的性质和等量代换得到判定全等三角形的条件, 再根据全等三角形的判定定理和面积相等的性质得到S、S、与ABC的关系, 即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.【详解】解:如图所示, 过点F作FGAM交于点G, 连接PF. 根据正方形

17、的性质可得: AB=BE, BC=BD,ABC+CBE=CBE+EBD=90,即ABC=EBD.在ABC和EBD中,AB=EB,ABC=EBD, BC=BD所以ABCEBD(SAS),故S=,同理可证,KMETPF,FGKACT,因为QAG=AGF=AQF=90, 所以四边形AQFG是矩形, 则QF/AG, 又因为QP/AC, 所以点Q、P, F三点共线, 故S+S=, S=. 因为QAF+CAT=90,CAT+CBA=90,所以QAF=CBA, 在AQF和ACB中, 因为AQF=ACB,AQ=AC,QAF=CAB所以AQFACB(ASA), 同理可证AQF BCA,故S1S2+S3+S1=

18、3 1 =6,故本题正确答案为B.【点睛】本题主要考查正方形和全等三角形的判定与性质.二、填空题(每题4分,共24分)13、二、四【解析】:k=-10,反比例函数y=-1/x 中,图象在第二、四象限14、1【分析】根据题意,b与2的比例中项为4,也就是b:4=4:2,然后再进一步解答即可【详解】根据题意可得:B:44:2,解得b1,故答案为:1【点睛】本题主要考查了比例线段,解题本题的关键是理解两个数的比例中项,然后列出比例式进一步解答15、【分析】根据菱形的判定方法直接就可得出推出菱形的概率【详解】根据“对角线互相垂直的平行四边形是菱形”直接判断符合题意;根据“一组邻边相等的平行四边形是菱形

19、”可直接判断符合题意;根据“对角线相等的平行四边形是矩形”,所以不符合菱形的判定方法;,BC=CD,是菱形,故符合题意;推出菱形的概率为:故答案为【点睛】本题主要考查菱形的判定及概率,熟记菱形的判定方法是解题的关键,然后根据概率的求法直接得出答案16、x1且x1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,即可求解【详解】解:根据二次根式有意义,分式有意义得:x-10且x-10,解得:x1且x1故答案为:x1且x1【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,难度不大.17、或1【分析】根据和时,多项式的值相等,得出 ,解方程即可【

20、详解】解:和时,多项式的值相等,化简整理,得,解得或1故答案为或1【点睛】本题考查多项式以及代数式求值,正确理解题意是解题的关键18、【分析】每次只摸出一个珠子时,布袋中共有珠子个,其中红珠子个,可以直接应用求概率的公式【详解】解:因为每次只摸出一个珠子时,布袋中共有珠子个,其中红珠子个,所以第次摸出红珠子的概率是故答案是:【点睛】本题考查概率的意义,解题的关键是熟练掌握概率公式三、解答题(共78分)19、A、B两点间的距离为100(1+)米【分析】如图,利用平行线的性质得A=60,B=45,在RtACD中利用正切定义可计算出AD=100,在RtBCD中利用等腰直角三角形的性质得BD=CD=1

21、00,然后计算AD+BD即可【详解】无人机在空中C处测得地面A、B两点的俯角分别为60、45,A=60,B=45,在中,=,AD=100,在中,BD=CD=100,AB=AD+BD=100+100=100(1+)答:A、B两点间的距离为100(1+)米【点睛】本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形20、【详解】解:树状图为:从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个,所以,P(这位考生合格)= 答:这位考生合格的概率是21、(1),B点坐标为

22、(3,0);(2);【分析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;由题意可知OB=OA,故当BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值【详解】(1)抛物线对称轴是直线x=1,=1,解得b=2,抛物线过A(0,3),c=3,抛物线解析式为,令y=0可得,解得x=1或x=3,B点坐标为(3,0);(2)由题意可知ON=

23、3t,OM=2t,P在抛物线上,P(2t,),四边形OMPN为矩形,ON=PM,3t=,解得t=1或t=(舍去),当t的值为1时,四边形OMPN为矩形;A(0,3),B(3,0),OA=OB=3,且可求得直线AB解析式为y=x+3,当t0时,OQOB,当BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,Q(2t,2t+3),OQ=,BQ=|2t3|,又由题意可知0t1,当OB=QB时,则有|2t3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t3|,解得t=;综上可知当t的值为或时,BOQ为等腰三角形22、(1)证明见解析;(2)【分析】(1)根据角平分

24、线的定义结合两直线平行,内错角相等可得,然后利用等角对等边证明即可;(2)先证得为等腰三角形,设,利用三角形内角和定理以及平行线性质定理证得,再利用同底等高的两个三角形面积相等即可求得答案【详解】(1)平分,又四边形是平行四边形,;(2),为等腰三角形,设,又,即为直角三角形,四边形是平行四边形,【点睛】本题考查了平行四边形的性质,角平分线的定义,三角形内角和定理,等角对等边的性质,同底等高的两个三角形面积相等,证得为直角三角形是正确解答(2)的关键23、(1)矩形的边长为10和2;(2)这个矩形的面积S与其一边长x的关系式是S=-x2+30 x;当矩形的面积取得最大值时,矩形是边长为15的正

25、方形【分析】(1)设矩形的一边长为,则矩形的另一边长为,根据矩形的面积为20列出相应的方程,从而可以求得矩形的边长;(2)根据题意可以得到矩形的面积与一边长的函数关系,然后根据二次函数的性质可以求得矩形的最大面积,并求出矩形面积最大时它的边长【详解】解:(1)设矩形的一边长为,则矩形的另一边长为,根据题意,得,解得,答:矩形的边长为10和2(2)设矩形的一边长为,面积为S,根据题意可得,所以,当矩形的面积最大时,答:这个矩形的面积与其一边长的关系式是S=-x2+30 x,当矩形面积取得最大值时,矩形是边长为15的正方形【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意

26、,列出相应的方程以及函数关系式,利用二次函数的性质解答24、13.5m【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HBEF1.6m,剩下的问题就是求AH的长度,利用CGEAHE,得出,把相关条件代入即可求得AH11.9,所以ABAH+HBAH+EF13.5m【详解】解:CDFB,ABFB,CDABCGEAHE即:AH11.9ABAH+HBAH+EF11.9+1.613.5(m)【点睛】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.25、 (1) B;(2) 2,3,2, 1 ;(3)S(x,y,z)2(yzS1xzS2xyS3);(4)2,2,3,2【分析】(1)根据几何体码放的情况,即可得到答案;(2)根据几何体的三视图,可知:几何体有2排,3列,2层,进而即可得到答案;(3)根据有序数组的几何体,表面上面积为S1的个数为2yz个, 表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,即可得到答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论