版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形的边角关系练习题回顾:1、三角形的概念定义:由 直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2、三角形的分类按角分:锐角三角形三角形 直角三角形钝角三角形按边分:不等边三角形三角形等腰三角形底边和腰不相等的等腰三角形 等边三角形3、三角形的重要线段在三角形中,最重要的三种线段是三角形的中线、三角形的角平分线、三角形的高。说明: ( 1)三角形的三条中线的交点在三角形的 部。( 2)三角形的三条角平分线的交点在三角形的 部。( 3) 三角形的三条高的交点在三角形的内部; 三角形的三条高的交点是直角顶点; 三角形的三条高所在直线的交点在三角形的外部。4、三角形三边的关系定理:三角形任
2、意两边的和 第三边;推论:三角形任意两边的差 第三边;说明:运用“三角形中任意两边的和大于第三边”可以判断三条线段能否组成三角形,也可以检验较小的两边的和是否大于第三边。5、三角形各角的关系定理:三角形的内角和是度;推论: ( 1)当有一个角是90时,其余的两个角的和为90;( 2)三角形的任意一个外角 和它不相邻的两个内角的和。( 3)三角形的任意一个外角 任意一个和它不相邻的内角。说明: 任一三角形中, 最多有三个锐角, 最少有两个锐角; 最多有一个钝角; 最多有一个直角。三角形的计数例1 如图,平面上有 A、R G DX E五个点,其中R C、D及A、E C分别在同一条直线上, 那么以这
3、五个点中的三个点为顶点的三角形有()A 4个B 、6个C、8 个D 、10 个解析:连接 AB AD BE、DE课件出示答案:C 小结:分类讨论是三角形的计数中常见的思路方法。举一反三:1、已知 ABCg直角三角形,且/ BAC=30 ,直线EF与4ABC的两边AG AB分别交于点 MN,那么/ CME +BNF=()A 150B、 180C、135D、不能确定解析:因为/ A=30 ,所以/ NMA廿 MNA=180 -30 =150 所以/ CME它 BNF=/ NMA+ MNA=150 .故选 A.三角形的三边关系例2边长为整数,周长为20的等腰三角形的个数是 。解析:根据三角形的周长及
4、三角形的三边关系建立不等式和方程,求出其中一边长的范围,再求其正整数解.答案:解:设三角形三边分别为 a、b、c且a b c, a+b+c=20,则a 7,又由b+ca,彳# a10,因 此 7 a 9 ,可求出( a, b,c )为( 9, 9, 2), ( 9, 8, 3) , ( 9,7,4),( 9,6,5) ,( 8, 8,4) , ( 8, 7, 5) ,( 8, 6 , 6) ,( 7,7, 6) ,其中等腰三角形有( 9,9,2),( 8,8,4) ,( 8 , 6,6) , ( 7, 7, 6) ,所以填 4.小结:利用已知的等量关系及三角形的三边关系, 建立不等式与方程,
5、进而组成不等式与方程的混合组,求其正整数解 .举一反三:2、现有3 cm, 4 cm, 7 cm, 9 cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( ) 。A.1B.2 C.3D.4三角形的内角和定理例3已知三角形三个内角的度数之比是 x: y: z,且x+yz,则这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形解析:设三角形三个内角为x,y,z.根据三角形内角和定理,得x+y+z=180 , %合x+yz,利用不等式的性质进行判断.答案:解:三角形的内角和为180 ,设三角形三个内角为x, y, z,则x+y+z=180 ,又x+yz
6、,即 1800 -z90 ,故这个三角形是钝角三角形。故选 Co小结:利用三角形内角和为180建立等量关系是常用的解题方法。例4 如图(1),有一个五角星形ABCDIS案,(1)你能说明/ A+/ B+/ C+/ D+/ E=180吗? (2)当A点向下移动到BE上如图(2),上述结论是否仍然成立? ( 3)当A点移到BE的另一侧 如图(3) ,上述结论是否仍然成立?请说明理由。解析:(1)连接CD设BD与EC相交于F,分别在AACD及ABER CDW运用三角形内角和定理课件出示答案:(1)解:设BD与CE相交于F点在4BEF中,/B+/ E+/ 1=180又 / A+/ C=/ 2有/ 1=
7、/2+/D=/A+/C+/D所以 /A+/B+/C+/D +/E=180解法二:解:(1)以题图(1)为例,说明如下:如图,连接CD设BD与EC相交于F,在4BEF中, /B+/ E+/ 3=180在4CDF中,/ 1+/2+7 4=180 ,所以/ B+/E+/3=/ 1+/2+/4所以/ B+/E=/1+/2在ACD, / A+/ACD廿ADF=180 , 即/A+/ACF吆 1+/ADF廿 2=180 , 所以/ A+/ACF吆 ADF吆 B+/ E=180 下一步(2) (3):根据(1)的解答方法独立完成(2)和(3)的探索 小结:在解决新问题时,往往将其转化为比较熟悉的问题,再加以
8、解决.(2)本例中出现的“对顶三角形”(如图),有如下结论:/ 1+/ 2=/3+/ 4.举一反三4 如图,/ BDC=98 , / C=38 , / B=23 , / A的度数是()A 61 B 、 60解析:连接 AD并延长,可证明 / BDC= A+/ B+Z C,所以/ A=98 -38 -23 =98 -61 =37 故选C.三角形的外角和例5 如图3-7, AABC中,/A、/B、/C的外角分别记为/,/ ,/ ,若/ =3: 4: 5,则/ A: / B: / C =()A、3: 2: 13: 4: 5B、 1: 2: 35: 4: 3解析:设/ a =3x,/ B =4x,/
9、T =5x,根据三角形的外角和等于3600列方程,再求/ A、/ B、/ C.答案:解:设/=3x, / =4x, / =5x,则3x+4x+5x=360解得x=30 0即:/ =90 , / =120 , / =150 , 所以/A=180 -/ =180 -90 0 =90 ,/B=180 -/ =180 -1200 =60 ,/C=180 -/ =180 -1500 =30所以 /A: / B: /C=90 : 600 : 300 =3: 2: 1小结:(1)三角形的外角和等于360 ;(2)方程思想是解决几何计算的常用方法.举一反三:5、将一副直角三角板如图3-11放置,使含30角的三
10、角板的短直角边和含 450角的三角板的一条直角边重合,则/ 1的度数为()学生分小组来解决这道题目,老师给予适当的指导,最后来讲解一下 课件出示解析:71=45 +300 = 75 .举一反三:6、如图3-12所示,求/ A+/ B+/ C+/ D+/ E+/ F的度数解析:设BE、CF、AD相互交于G、H、K.因为在4AFK 中,/ A+/F+/4=180 ,在4BCG 中,/ B+/C+/5=180 ,在4EDH 中,Z D+ZE+Z 6=180 ,所以/ A+ / F+/4+/B+ /C+ Z5+Z D+/ E+/6=180 乂 3=540 又因为/ 1 + /3+/2=180 , /1
11、 = /4, /2=/5, /3=/6, 所以/A+ /F+/B+ /C+/D+/E=360 .三角形与平行线的综合运用例6如图,直线AC/ BR连接AB,直线AC,BD及线段AB把平面分成、四部分, 规定:线上各点不属于任何部分。当动点 P落在某个部分时,连接PA,PB,构成/PAC ZAP /PBDE个角。(提示:有公共端点的两条重合的射线所组成的角是 0。角。)(1)当动点P落在第部分时,求证:/ APBW PAC廿PBD(2)当动点P落在第部分时,/APB4 PAC廿PBD否成立(直接回答成立或不成立):(3)当动点P在第部分时,全面探究/ PAC / APB /PBD之间的关系,并写
12、出动点 的具体位置和相应的结论。选择其中一种结论加以证明。解析:(1)延长BP交AC于点E,运用平行线的性质和三角形内角和定理及推论; 答案:(1)解法一:如图(1),延长BP交直线AC于点E。v AC/ BR. ./PEAW PBDv /APBW PAE+Z PEA丁 /APBW PAC+/ PBD解法二:如图(2),过点P作FP/AG丁 /PACW APEv AC/ BD ,. FP/ BD丁 /FPB玄 PBD丁. / APB=: APF吆 FPB玄 PAC+/ PBD的历答国)不成立运用平行线的性质或三角形内角和定理的推论解决 .(a)当动点P在射线BA的右侧时,结论是/ PBDW PAC+/ APB 如图(3),连接PA PB,设PB交AC于Mif 0恻6香图(野v AC/ BR . ./PMC=PBD 又; ZPMC= PAM+APM 丁 /PBDWPAC它 APB(b)当动点P在射线BA上时,结论是/ PBDW PAC廿APB或/PACWPBD它APBiE / APB=0 , /PACNPBD (任写一个即可)。证明:如图(4)丁点P在射线BA上,./ APB=0v AC/ BD ,./PBDW PAC . ./PBDW PAC廿
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职交通运输管理(交通流量调控)试题及答案
- 2025年高职(连锁经营管理)门店运营单元测试试题及答案
- 2025年高职(中药制药技术)中药制剂试题及答案
- 2025年高职艺术设计(艺术教育心理学案例分析)试题及答案
- 2026年音响设备销售(安装指导)试题及答案
- 痤疮瘢痕科普
- 中国人工智能发展路线图
- 医患和谐主题小品
- 2025云南昆明市盘龙区博物馆公益性岗位招聘2人备考题库及答案详解(夺冠系列)
- 2025新疆博乐市市场监管局招聘2人备考题库及完整答案详解一套
- 中小企业专利质量控制指引编制说明
- 旅游行业安全风险管控与隐患排查方案
- 专题15 物质的鉴别、分离、除杂、提纯与共存问题 2024年中考化学真题分类汇编
- DL-T5418-2009火电厂烟气脱硫吸收塔施工及验收规程
- 复方蒲公英注射液在痤疮中的应用研究
- 高考数学专题:导数大题专练(含答案)
- 腘窝囊肿的关节镜治疗培训课件
- 淮安市2023-2024学年七年级上学期期末历史试卷(含答案解析)
- 课件:曝光三要素
- 2023-2024学年山东省淄博市临淄区八年级(上)期末数学试卷(五四学制)(含解析)
- GB/T 10802-2023通用软质聚氨酯泡沫塑料
评论
0/150
提交评论