




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级上册数学期末考试题(含答案)一、选择题:(本大题共12个小题,每小题4分,共48分)1下列各数中,是无理数的是()ABC2D0.32下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD3计算(xy2)2的结果是()A2x2y4Bx2y4Cx2y2Dx2y44分式Ax3有意义,则x的取值范围是()Bx3Cx3Dx35ABC三边长分别为a、b、eqoac(,c),则下列条件不能判断ABC是直角三角形的是()Aa3,b4,c5Ca6,b8,c106下列命题是假命题的是()A两直线平行,同位角相等B全等三角形面积相等C直角三角形两锐角互余D若a+b0,那么a0,b07估计(2+)的值应在
2、()Ba4,b5,c6Da5,b12,c13A3和4之间B4和5之间C5和6之间D6和7之间8如果直线y3x+b与两坐标轴围成的三角形面积等于2,则b的值是()A3B3CD29如图,直线yx1与ykx+b(k0且k,b为常数)的交点坐标为(2,l),则关于x的不等式x1kx+b的解集为()Ax2Bx2Cx1Dxl10如图,把eqoac(,Rt)ABC放在平面直角坐标系中,点B(1,1)、C(5,1),ABC90,AC4将ABC沿y轴向下平移,当点A落在直线yx2上时,线段AC扫过的面积为()ABCD11如图,eqoac(,Rt)ABC的两边OA,OB分别在x轴、y轴上,点O与原点重合,点A(3
3、,0),点B(0,3),将eqoac(,Rt)AOB沿x轴向右翻滚,依次得到eqoac(,1),eqoac(,2),eqoac(,3),则2020的直角顶点的坐标为()A(673,0)C(6057+2019,)B(6057+2019D(673,),0)12已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组A4有且仅有四个整数解,则所有满足条件的k的和为()B9C10D12二、填空题:(本大题6个小题,每小题4分,共24分)13因式分解:5x22x14+(3.14)0()215一次函数ykx+b的图象经过点(0,3),且与直线yx+1平行,则该一次函数解析式为16若m,n为
4、实数,且m+8,则m+n的算术平方根为17甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示则当甲到达终点时,乙跑了米18A、B、C、D、E、F六人按顺序围成一圈做游戏,每人抽一个数,已知每人按顺序抽到数字的两倍与其他五个人的平均数之差分别为9、10、13、15、23、30,则C抽到的数字是三、解答题(本大题2个小题,每小题8分,共16分)19解下列方程组或者不
5、等式组(1)解方程组:(2)解不等式组:eqoac(,20)作图题:(不要求写作法)如图,在平面直角坐标系中,ABC的三个顶点的坐标分别为A(3,4),B(3,1),C(1,3)(eqoac(,1))作图:将ABC先向右平移4个单位,再向下平移3个单位,则得到eqoac(,A)1B1C1,求作eqoac(,A)1B1C1;(eqoac(,2))求BCC1面积四、解答题:(本大题4个小题,每小题10分,共40分)21重庆一中田径代表队在2018年重庆市青少年田径锦标赛上勇夺金牌8枚,银牌4枚,铜牌8枚,喜讯再次点燃了同学们热爱运动的热情为了解学生参与运动的情况,学校随机抽查了部分学生每日运动时间
6、的情况,并将调查学生每日运动时间情况条形统计图学生每日运动时间情况扇形统计图(1)被抽查的学生总数是人,并在图中补全条形统计图;(2)写出每日运动时间的中位数是小时,众数是小时;(3)求这批被调查学生平均每日运动的时间22如图,直线AB:y2x+6与直线AC:y2x+2相交于点A,直线AB与x轴交于点B,直线AC与x轴交于点D,与y轴交于点C(1)求交点A的坐标;(eqoac(,2))求ABC的面积23为了满足学生的需求,重庆一中mama超市准备购进甲、乙两种绿色袋装食品其中甲乙两种绿色袋装食品的进价和售价如表:甲乙进价(元/袋)售价(元/袋)n+222n212已知:超市购进200袋甲种袋装食
7、品或者购进300袋乙种袋装食品所用金额相等(1)求n的值;(2)要使购进的甲、乙两种绿色袋装食品共1200袋的总利润(利润售价进价)不少于6400元,且不超过6420元,问该mama超市有哪几种进货方案?要获得最大利润该如何进货?(请写出具体方案)eqoac(,24)在ABC中,ABAC,点D为BC的中点,连接AD(1)如图1,H为线段CB延长线上的一点,连接AH,若ACB60,AHC45,AH2,求HC;(2)如图2,点E为AD上任意一点,过点E作EFAD交AC于点F,连接BF,取BF中点M,连接MD和ME,求证:MEMD五、解答题:(本大题2个小题,25题10分,26题12分,共22分)2
8、5阅读下列材料:对于一个任意四位正整数,若其千位数字与百位数字组成的两位数是它的十位数字与个位数字组成的两位数的两倍,则称这样的四位正整数为“双倍数”,如6231,其千位数字与百位数字组成的两位数为62,其十位数字与个位数字组成的两位数是31,62是31的两倍,则称6231为“双倍数”(1)猜想任意一个“双倍数”能否被67整除,并说明理由;(2)若一个双倍数的各个数位数字分别加上1组成一个新的四位正整数,这个新的四位正整数能被7整除,求所有满足条件的“双倍数”26如图,平面直角坐标系中直线l1:yx与直线l2:yx+8相交于点A,直线l2与x轴相交于点B,与y轴相交于点C,点D(6,0),点F
9、(0,6),连接DF(1)如图1,求点A的坐标;(2)如图1,若将ODF向x轴的正方向平移a个单位,得到eqoac(,O)DF,点D与点B重合时停止移动,设eqoac(,O)Deqoac(,F)与OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围;(3)如图eqoac(,2),现将ODF向x轴的正方向平移12个单位得到eqoac(,O)1D1F1,直线O1F1与直线l2交于点eqoac(,G),再将O1GB绕点G旋转,旋转角度为(0360),记旋转后的三角形为eqoac(,O)1GB,直线O1G与直线l1的交点为M,直线GB与直线l1的交点为N,是否存在GMN为等腰三角形?若存
10、在请直接写出MN的值;若不存在,请说明理由参考答案与试题解析一选择题(共12小题)1下列各数中,是无理数的是()ABC2D0.3【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【解答】解:A是无理数;B是分数,属于有理数;C2是整数,属于有理数;D0.3是有限小数,即分数,属于有理数;故选:A2下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B
11、、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误故选:C3计算(xy2)2的结果是()A2x2y4Bx2y4Cx2y2Dx2y4【分析】根据积的乘方和幂的乘方运算法则计算可得【解答】解:(xy2)2x2y4,故选:D4分式有意义,则x的取值范围是()Ax3Bx3Cx3Dx3【分析】本题主要考查分式有意义的条件:分母0,即x30,解得x的取值范围【解答】解:x30,x3故选:C5ABC三边长分别为a、b、eqoac(,c),则下列条件不能判断ABC是直角三角形的是()Aa3,b4,c5Ca6,b8,
12、c10Ba4,b5,c6Da5,b12,c13【分析】如果三角形的三边长a,b,c满足a2+b2c2,那么这个三角形就是直角三角形【解答】解:A32+425eqoac(,2),ABC是直角三角形;B52+426eqoac(,2),ABC不是直角三角形;C62+8210eqoac(,2),ABC是直角三角形;D122+4213eqoac(,2),ABC是直角三角形;故选:B6下列命题是假命题的是()A两直线平行,同位角相等B全等三角形面积相等C直角三角形两锐角互余D若a+b0,那么a0,b0【分析】根据平行线的性质对A进行判断;根据全等三角形的性质对B进行判断;根据互余的定义对C进行判断;利用反
13、例对D进行判断【解答】解:A、两直线平行,同位角相等,所以A选项的命题为真命题;B、全等三角形面积相等,所以B选项的命题为真命题;C、直角三角形两锐角互余,所以C选项的命题为真命题;D、当a3,b1,所以D选项的命题为假命题故选:D7估计(2+)的值应在()A3和4之间B4和5之间C5和6之间D6和7之间【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可【解答】解:(22+2,+)22423,+25故选:B8如果直线y3x+b与两坐标轴围成的三角形面积等于2,则b的值是()A3B3CD2【分析】设直线y3x+b与x轴交于点A,与y轴交于点B,利用一次函数图象上点的坐标特征可得出
14、点A,B的坐标,利用三角形的面积公式结合AOB的面积为2,可得出关于b的一元二次方程,解之即可得出结论【解答】解:设直线y3x+b与x轴交于点A,与y轴交于点B当x0时,y3x+bb,点B的坐标为(0,b);当y0时,3x+b0,解得:xeqoac(,S)AOBOAOB2,|b|2,b2故选:C9如图,直线yx1与ykx+b(k0且k,b为常数)的交点坐标为(2,l),则关于x的不等式x1kx+b的解集为()Ax2Bx2Cx1Dxl【分析】根据题意知,直线ykx+b位于直线yx1上方的部分符合题意【解答】解:如图,直线yx1与ykx+b(k0且k,b为常数)的交点坐标为C(2,l),所以关于x
15、的不等式x1kx+b的解集为x2故选:A10如图,把eqoac(,Rt)ABC放在平面直角坐标系中,点B(1,1)、C(5,1),ABC90,AC4将ABC沿y轴向下平移,当点A落在直线yx2上时,线段AC扫过的面积为()ABCD【分析】根据题意,可以求得点A的坐标,然后根据平移的特点,可知线段AC扫过的图形是平行四边形,再根据点A落在直线yx2上时,从而可以求得线段AC平移的距离,进而求得线段AC扫过的面积【解答】解:点B(1,1)、C(5,1),ABC90,AC4BC4,AB4,点A的坐标为(1,5),将x1代入yx2得,y线段AC扫过的面积为:|5(故选:D,)|(51),11如图,eq
16、oac(,Rt)ABC的两边OA,OB分别在x轴、y轴上,点O与原点重合,点A(3,0),点B(0,3),将eqoac(,Rt)AOB沿x轴向右翻滚,依次得到eqoac(,1),eqoac(,2),eqoac(,3),则2020的直角顶点的坐标为()A(673,0)C(6057+2019,)B(6057+2019D(673,),0)【分析】在翻滚的过程中,每翻滚三次就重复出现原来的形状,可将这样的翻滚称为三循环,那么20203673eqoac(,1),所以2020的形状如同eqoac(,4),即直角顶点的纵坐标为0,再求出ABC的周长的673倍即为横坐标【解答】解:2020367312020的
17、形状如同eqoac(,4)2020的直角顶点的纵坐标为0而OB1+B1A2+A2O23+6+39+32020的直角顶点的横坐标为(9+3)6736057+2019故选:B12已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组A4有且仅有四个整数解,则所有满足条件的k的和为()B9C10D12【分析】解方程组得,得到k4,6;解不等式组得到k4,5,6,于是得到所有满足条件的k的和4+610【解答】解:解方程组得,方程组的解为正整数,k4,6;解不等式组得,不等式组有且仅有四个整数解,12,3k6,k4,5,6,所有满足条件的k的和4+610,故选:C二填空题(共6小题)1
18、3因式分解:5x22xx(5x2)【分析】提取公因式x即可得【解答】解:5x22xx(5x2),故答案为:x(5x2)14+(3.14)0()210【分析】直接利用零指数幂的性质以及负指数幂的性质、立方根的性质分别化简得出答案【解答】解:原式2+1910故答案为:1015一次函数ykx+b的图象经过点(0,3),且与直线yx+1平行,则该一次函数解析式为yx+3【分析】设一次函数解析式为ykx+b,先把(0,3)代入得b3,再利用两直线平行的问题得到k,即可得到一次函数解析式;【解答】解:设一次函数解析式为ykx+b,把(0,3)代入得b3,直线ykx+b与直线yx+1平行,k,一次函数解析式
19、为yx+3故答案为yx+316若m,n为实数,且m+8,则m+n的算术平方根为3【分析】根据二次根式的被开方数是非负数求得n1,继而求得m8,然后求m+n的算术平方根【解答】解:依题意得:1n0且n10,解得n1,所以m8,所以m+n的算术平方根为:3故答案是:317甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示则当甲到达终点时,乙跑了1380米【分析】先由
20、图象和已知条件求出甲乙的速度,进而求出两人相距300米时甲跑的路程以及离终点的距离和从会和到终点甲所用的时间,从而求出乙跑420秒的路程,最后求出乙跑的总路程【解答】解:由题意得乙的速度:180012001.5(米/秒),甲的速度:1.5+3003002.5(米/秒),两人相距300m时,甲跑的路程是2.5300750(米),此时离终点距离米),从会合到终点甲的用时是10502.5420(秒)乙从会合点跑420秒路程是4201.5630(米),当甲到终点时,乙跑的总路程是750+6301380(米)故答案为:138018A、B、C、D、E、F六人按顺序围成一圈做游戏,
21、每人抽一个数,已知每人按顺序抽到数字的两倍与其他五个人的平均数之差分别为9、10、13、15、23、30,则C抽到的数字是15【分析】设A、B、C、D、E、F六人抽到的数分别为:a,b,c,d,e,f,由题意列出方程组,可求c的值【解答】解:设A、B、C、D、E、F六人抽到的数分别为:a,b,c,d,e,f,由题意可得解得:c15故答案为:15三解答题(共8小题)19解下列方程组或者不等式组(1)解方程组:(2)解不等式组:(【分析】1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可【解答】解:(1)整理得得7y1,解得y,把y代入得x+2,解得x,所以方程组的解为
22、;(2)解不等式得,x4;解不等式得x5,不等式组的解集为5x4eqoac(,20)作图题:(不要求写作法)如图,在平面直角坐标系中,ABC的三个顶点的坐标分别为A(3,4),B(3,1),C(1,3)(eqoac(,1))作图:将ABC先向右平移4个单位,再向下平移3个单位,则得到eqoac(,A)1B1Ceqoac(,1),求作A1B1C1;(eqoac(,2))求BCC1面积(【分析】eqoac(,1))依据平移动方向和距离,即可得到A1B1C1;(eqoac(,2))利用割补法进行计算,即可得到BCC1面积【解答】解:(eqoac(,1))如图所示,A1B1C1即为所求;(eqoac(
23、,2))如图,BCC1面积为:6316223418326721重庆一中田径代表队在2018年重庆市青少年田径锦标赛上勇夺金牌8枚,银牌4枚,铜牌8枚,喜讯再次点燃了同学们热爱运动的热情为了解学生参与运动的情况,学校随机抽查了部分学生每日运动时间的情况,并将调查学生每日运动时间情况条形统计图学生每日运动时间情况扇形统计图(1)被抽查的学生总数是100人,并在图中补全条形统计图;(2)写出每日运动时间的中位数是40小时,众数是40小时;(3)求这批被调查学生平均每日运动的时间(【分析】1)根据题意列式计算,补全条形统计图即可;(2)根据条形统计图中的数据即可得到结论;(3)根据平均数的计算公式即可
24、得到结论【解答】解:(1)被抽查的学生总数是1010%100人,每日运动时间为1.2小时的学生人数为10020%20人,补全条形统计图如图所示;故答案为:100;(2)每日运动时间的中位数是40小时,众数是40小时;故答案为:40,40;(3)这批被调查学生平均每日运动的时间10+25)0.995小时(0.210+0.515+140+1.220+1.622如图,直线AB:y2x+6与直线AC:y2x+2相交于点A,直线AB与x轴交于点B,直线AC与x轴交于点D,与y轴交于点C(1)求交点A的坐标;(eqoac(,2))求ABC的面积【分析】(1)联立直线AB,AC的解析式成方程组,通过解方程组
25、即可求出点A的坐标;(2)设直线AB与y轴交于点E,利用一次函数图象上点的坐标特征可求出点B,C,E的坐标,利用三角形的面积公式结合eqoac(,S)ABCeqoac(,S)BOEeqoac(,S)BOCeqoac(,S)ACE,即可求出ABC的面积【解答】解:(1)联立直线AB,AC的解析式成方程组,得:解得:,交点A的坐标为(1,4)(2)设直线AB与y轴交于点E,如图所示当x0时,y2x+66,y2x+22,点E的坐标为(0,6),点C的坐标为(0,2),OE6,OC2,CE4当y0时,2x+60,解得:x3,点B的坐标为(3,0),OB3eqoac(,S)ABCeqoac(,S)BOE
26、eqoac(,S)BOCeqoac(,S)ACE,363241,4,23为了满足学生的需求,重庆一中mama超市准备购进甲、乙两种绿色袋装食品其中甲乙两种绿色袋装食品的进价和售价如表:甲乙进价(元/袋)售价(元/袋)n+222n212已知:超市购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等(1)求n的值;(2)要使购进的甲、乙两种绿色袋装食品共1200袋的总利润(利润售价进价)不少于6400元,且不超过6420元,问该mama超市有哪几种进货方案?要获得最大利润该如何进货?(请写出具体方案)(【分析】1)根据“购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等”
27、列出方程并解答;(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(1200 x)袋,然后根据总利润列出一元一次不等式组解答;【解答】解:(1)依题意得:200(n+2)300(n2),解得:n10,(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(1200 x)袋,根据题意得,解得:x270,x是正整数,270266.7+14,共有4种方案;甲的利润大于乙的利润,要获得最大利润该应该进货时甲最大才行,即甲进货270袋,乙进货1200270930袋eqoac(,24)在ABC中,ABAC,点D为BC的中点,连接AD(1)如图1,H为线段CB延长线上的一点,连接AH,若ACB60,
28、AHC45,AH2,求HC;(2)如图2,点E为AD上任意一点,过点E作EFAD交AC于点F,连接BF,取BF中点M,连接MD和ME,求证:MEMD(【分析】eqoac(,1))证明ABC是等边三角形,得出BCAB,ABCBAC60,ADBC,CDBDBC,BADeqoac(,30),证明ADH是等腰直角三角形,得出ADDHAH2,由含30角的直角三角形的性质得出ADBD2,求出CDBD,即可得出HCDH+CD2+;(2)延长FE、DM交于点G,证出DEG90,EFBC,由平行线的性质得出GBDM,证明BDMFGM(AAS),得出DMGM,再由直角三角形斜边上的中线性质即可得出结论【解答】(1
29、)解:ABAC,ACB60,ABC是等边三角形,BCAB,ABCBAC60,点D为BC的中点,ADBC,CDBDBC,BAD30,AHC45,AH2,ADH是等腰直角三角形,ADDHAH2,BAD30,ADBD2,CDBD,HCDH+CD2+;(2)证明:延长FE、DM交于点G,如图2所示:EFAD,ADBC,DEG90,EFBC,GBDM,M为BF的中点,BMFM,在BDM和FGM中,BDMFGM(AAS),DMGM,EMDGMD,25阅读下列材料:对于一个任意四位正整数,若其千位数字与百位数字组成的两位数是它的十位数字与个位数字组成的两位数的两倍,则称这样的四位正整数为“双倍数”如6231
30、,其千位数字与百位数字组成的两位数为62,其十位数字与个位数字组成的两位数是31,62是31的两倍,则称6231为“双倍数”(1)猜想任意一个“双倍数”能否被67整除,并说明理由;(2)若一个双倍数的各个数位数字分别加上1组成一个新的四位正整数,这个新的四位正整数能被7整除,求所有满足条件的“双倍数”(【分析】1)根据已知条件,将数字表示成67的倍数即可;(2)根据已知条件,表示出已知数字,即可求出已知数的满足条件,写出已知数即可【解答】解:设正整数mD4D3D2D1,其中D4、D3、D2、D1表示各个位置上的数字,且为0到9之间的整数(D40),根据“双倍数”的定义,有10D4+D32(10
31、D2+D1)(1)假设mD4D3D2D1是“双倍数”,则有m1000D4+100D3+10D2+D1100(10D4+D3)+10D2+D1,根据“双倍数”定义,有m1002(10D2+D1)+10D2+D12010D2+201D1201(10D2+D1),则3(10D2+D1)30D2+3D1为整数,由此可见,任意一个“双倍数”都能被67整除;(2)由题意,新组成的四位正整数可表示为:1000(D4+1)+100(D3+1)+10(D2+1)+D1+1201(10D2+D1)+1111因为N,也就是2010D2+201D1+1111可以整除7,而111171585,所以需要“双倍数”(201
32、0D2+201D1)7n2才可以整除7故所有满足这样条件的“双倍数”(用排除法)有:2613,502526如图,平面直角坐标系中直线l1:yx与直线l2:yx+8相交于点A,直线l2与x轴相交于点B,与y轴相交于点C,点D(6,0),点F(0,6),连接DF(1)如图1,求点A的坐标;(2)如图eqoac(,1),若将ODF向x轴的正方向平移a个单位,得到eqoac(,O)DF,点D与点B重合时停止移动,设eqoac(,O)Deqoac(,F)与OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围;(3)如图eqoac(,2),现将ODF向x轴的正方向平移12个单位得到eqoac
33、(,O)1D1F1,直线O1F1与直线l2交于点eqoac(,G),再将O1GB绕点G旋转,旋转角度为(0360),记旋转后的三角形为eqoac(,O)1GB,直线O1G与直线l1的交点为M,直线GB与直线l1的交点为N,是否存在GMN为等腰三角形?若存在请直接写出MN的值;若不存在,请说明理由【分析】(1)由两直线解析式组成方程组,解方程组即可得到交点A的坐标;(eqoac(,2))DOF向右水平移动时,与AOB重叠的图形在0a6时为直角三角形,用a表示出S两直角边即可求出面积的函数关系式,当6a24时,重叠部分为四边形,四边形SHODSeqoac(,F)ODeqoac(,S)FSH(eqo
34、ac(,3))存在,在GO1B绕点G逆时针旋转过程中,等腰MNG只有两种情况:MGN60,MGN120;分类进行计算【解答】解:(1)由题意得A(6,),解得,(2)在yB(24,0),x+8中,令y0,得x+80,x24令x0,y,C(0,),在eqoac(,Rt)BOC中,tanBCO在eqoac(,Rt)DOF中,tanDFO,BCO60,DFO30分两种情况:当0a6时,如图1,FO交直线l1于点E,则O(a,0),ya,E(a,a),即EOa,OOa,SOOEO,当6a30时,如图2,OOa,H(a,FH()FOOC,BHOBCO60DFODFO30,FSH90,)SHFH(),FS
35、SH(),SSFODSFHS()(FODO)FSSH66(3)存在,MN8或24F1O1y轴,BGO1BCO60,GMN为等腰三角形时,MGN60或120,分两种情况:当MGNeqoac(,60)时,GMN必为等边三角形,如图3,此时旋转角30或90或270,OO112,BO112,BG8,ABOBcosOBC24cos3012,AGABBG12MNNG84,8,当MGN120时,GMN为等腰三角形,MNGNMG30,如图4,此时旋转角120或300,MN2AN24八年级(上)数学期末考试题【答案】一、选择题(本大题共6个小题,每小题3分,共18分)1某多边形的内角和是其外角和的4倍,则此多边
36、形的边数是()A10B9C8D72如图,点D、E分别在AC、AB上,已知ABeqoac(,AC),添加下列条件,不能说明ABDACE的是()ABCBADAECBDCCEBDBDCE3如图,在eqoac(,Rt)ABC中,C90,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E若BC3,则DE的长为()A14若式子A2B2C3D4的值等于0,则x的值为()B2C2D45下列各式运算正确的是()A3y35y415y12C(a3)2(a2)36已知关于x的分式方程Am3Cm3且m2B(ab5)2ab10D(x)4(x)6x102+的解是负数,则m的取值范围是()Bm3Dm3且m2二、填空题
37、(本大题共6小题,每小题3分)7我国医学界最新发现的一种病毒其直径仅为0.000512mm,这个数字用科学记数法可表示为mm8一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是eqoac(,9)如图,在ABC中,B50,C70,AD是高,AE是角平分线,则EAD度10若a+b5,ab3,则2a2+2b211分解因式:m3n4mneqoac(,12)如图,已知ABC为等边三角形,高AH5cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为cm三、(本大题共5小题,每小题6分,共30分)13(6分)已知:如图,点B,E,C,F在同一直线上,ABDE,且ABDE,BECF求证:A
38、BCDEF14(6分)先化简(值15(6分)解方程:a+2),再从2,2,4,0中选择一个合适的数代入求+316(6分)已知a、b、c是ABC的三边的长,且满足a2+2b2+c22b(a+c)0,试判断此三角形的形状17(6分)已知:如图,ABC和DBE均为等腰直角三角形(1)求证:ADCE;(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由四、(本大题共3小题,每小题8分,共24分)18(8分)在直角坐标系中,已知点A(a+b,2a)与点B(a5,b2a)关于y轴对称(1)求A、B两点的坐标;(2)如果点B关于x轴的对称点是C,在图中标出点A、B、eqo
39、ac(,C),并求ABC的面积19(8分)如图,ABC中,ACB90,ACBC,直线l过点C,BDl,AEl,垂足分别为D、E(1)当直线l不与底边AB相交时,求证:EDAE+BD;(2)如图2,将直线l绕点C顺时针旋转,使l与底边AB相交时,请你探究ED、AE、BD三者之间的数量关系20(8分)某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半
40、,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?五、(本大题共2小题,每小题9分,共18分)21(9分)仔细阅读下面例题:例题:已知二次三项式x2+5x+m有一个因式是x+2,求另一个因式以及m的值解:设另一个因式x+n,得x2+5x+m(x+2)(x+n),则x2+5x+mx2+(n+2)x+2n,n+25,m2n,解得n3,m6,另一个因式为x+3,m的值为6依照以上方法解答下面问题:(1)若二次三项式x27x+12可分解为(x3)(x+a),则a(2)若二次三项式2x2+bx6可分解为(2x+3)(x2),则b(3)已知二次三项式2x2+9xk有一
41、个因式是2x1,求另一个因式以及k的值22(9分)在ABC中,A40(1)如图1,若两内角ABC、ACB的角平分线交于点P,则P,A与P之间的数量关系是为什么有这样的关系?请证明它;(2)如图2,若内角ABC、外角ACE的角平分线交于点P,则P,A与P之间的数量关系是;(3)如图3,若两外角EBC、FCB的角平分线交于点P,则P,A与P之间的数量关系是六、(本大题1小题,满分12分)23(12分)已知,ABC是边长3cm的等边三角形动点P以1cm/s的速度从点A出发,沿线段AB向点B运动(1)如图1,设点P的运动时间为t(s),那么t(eqoac(,s))时,PBC是直角三角形;(2)如图2,
42、若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发设运动时间为t(s),那么t为何值时,PBQ是直角三角形?(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动连接PQ交AC于D如果动点P、Q都以1cm/s的速度同时出发设运动时间为t(s),那么t为何值时,DCQ是等腰三角形?(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动连接PQ交AC于D,连接PC如果动点P、Q都以1cm/s的速度同时出发请你猜想:在点P、Q的运动过程中,PCD和QCD的面积有什么关系?并说明理由参考答案一、选择题1某多边形的内角和是其外角和的4倍,则此多边形的边数是()A
43、10B9C8D7【分析】任何多边形的外角和是360,即这个多边形的内角和是4360n边形的内角和是(n2)180,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数解:设多边形的边数为n,根据题意,得(n2)1804360,解得n10则这个多边形的边数是10故选:A【点评】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为3602如图,点D、E分别在AC、AB上,已知ABeqoac(,AC),添加下列条件,不能说明ABDACE的是()ABCBADAECBDCCEBDBDCE【分析】要使ABDACE,则需对应边相等,夹角相等,可用
44、两边夹一角,也可用两角夹一边判定全等解:已知条件中ABAC,A为公共角,A中BC,满足两角夹一边,可判定其全等,A正确;B中ADAE两边夹一角,也能判定全等,B也正确;C中BDCCEB,即ADBAEC,又A为公共角,BC,所以可得三角形全等,C对;D中两边及一角,但角并不是夹角,不能判定其全等,D错故选:D【点评】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法,是正确解题的前提;做题时要按判定全等的方法逐个验证3如图,在eqoac(,Rt)ABC中,C90,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E若BC3,则DE的长为()A1B2C3D4【分析】由角平分线和线段垂直
45、平分线的性质可求得BCADDAB30,解:DE垂直平分AB,DADB,BDAB,AD平分CAB,CADDAB,C90,3CAD90,CAD30,AD平分CAB,DEAB,CDAC,CDDEBD,BC3,CDDE1,故选:A【点评】本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键4若式子A2的值等于0,则x的值为()B2C2D4【分析】根据分式的值为0的条件即可求出答案解:由题意可知:解得:x2故选:C【点评】本题考查分式的值为0,解题的关键是正确理解分式的值为0的条件,本题属于基础题型5下列各式运算正确的是()A3y35y415y12C(a3)2(a
46、2)3B(ab5)2ab10D(x)4(x)6x10【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加幂的乘方法则:底数不变,指数相乘进行计算即可解:A、3y35y415y7,故原题计算错误;B、(ab5)2a2b10,故原题计算错误;C、(a3)2(a2)3故原题计算正确;D、(x)4(x)6x10故原题计算错误;故选:C【点评】此题主要考查了单项式乘法和同底数幂的乘法、幂的乘方,关键是掌握各计算法则6已知关于x的分式方程Am3Cm3且m22+的解是负数,则m的取
47、值范围是()Bm3Dm3且m2【分析】分式方程去分母转化为整式方程,由分式方程的解为负数确定出m的范围即可解:分式方程去分母得:2x2mx2x2+2x+x+1,整理得:(m+3)x1,当m+30,即m3时,x由分式方程解为负数,得到,1且0,0,且m2,m3,解得:m3且m2,故选:C【点评】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键二、填空题(本大题共6小题,每小题3分,共18分)7我国医学界最新发现的一种病毒其直径仅为0.000512mm,这个数字用科学记数法可表示为5.12104mm【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,
48、与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定解:0.000512mm,这个数字用科学记数法可表示为5.12104mm,故答案为:5.12104【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是7或9【分析】本题可先求出第三边的取值范围再根据8+3为奇数,周长为偶数,可知第三边为奇数,从而找出取值范围中的奇数,即为第三边的长解:设第三边长为x,则83x8+3,即5x11又x为奇数,x7或9,故
49、答案为7或9【点评】本题主要考查的是三角形的三边关系和特殊解,注意:偶数加偶数为偶数,奇数加奇数为偶数,难度适中eqoac(,9)如图,在ABC中,B50,C70,AD是高,AE是角平分线,则EAD10度【分析】根据三角形内角和定理求出BAC,再根据角平分线的定义求出BAD,根据直角三角形两锐角互余求出BAE,然后求解即可解:B50,C70,BAC180BC180507060,AD是角平分线,BADBAC6030,AE是高,BAE90B905040,DAEBAEBAD403010故答案为:10【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定
50、理并准确识图是解题的关键10若a+b5,ab3,则2a2+2b238【分析】2a2+2b22(a2+b2),然后根据a2+b2(a+b)22ab进行计算即可解:原式2(a2+b2)2(a+b)22ab2522338故答案为:38【点评】本题主要考查的是完全平方公式的应用,依据完全平方公式将a2+b2变形为(a+b)22ab是解题的关键11分解因式:m3n4mnmn(m2)(m+2)【分析】先提取公因式mn,再利用平方差公式分解因式得出即可解:m3n4mnmn(m24)mn(m2)(m+2)故答案为:mn(m2)(m+2)【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式是
51、解题关键eqoac(,12)如图,已知ABC为等边三角形,高AH5cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为5cm【分析】连接PC,根据等边三角形三线合一的性质,可得PCBP,PD+PB要取最小值,应使D、P、C三点一线解:连接PC,ABC为等边三角形,D为AB的中点,AHBC,CDAH5cm,PD+PB的最小值为:PD+PBPC+PDCDAH5cm故答案为5【点评】此题主要考查有关轴对称最短路线的问题,注意灵活应用等边三角形的性质三、(本大题共5小题,每小题6分,共30分)13(6分)已知:如图,点B,E,C,F在同一直线上,ABDE,且ABDE,BECF求证:ABCDE
52、F【分析】直接利用全等三角形的判定方法得出答案证明:ABDE,BDEFBEFC,BCEF,在ABC和DEF中,ABCDEF(SAS)【点评】此题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边14(6分)先化简(a+2),再从2,2,4,0中选择一个合适的数代入求值【分析】根据分式的混合运算顺序和运算法则化简原式,再将符合分式有意义的a的值,即4代入计算可得解:原式(),当a4时,原
53、式【点评】本题主要考查分式的化简求值,熟练掌握分式混合运算的顺序和运算法则是解题的关键15(6分)解方程:+3【分析】因为2x22(x1),1x(x1),所以方程最简公分母为:2(x1),故方程同乘以最简公分母化为整式方程求解解:方程两边同乘以2(x1),得:326(x1),整理得:16x6,解得:x经检验:x是原方程的解(【点评】1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根16(6分)已知a、b、c是ABC的三边的长,且满足a2+2b2+c22b(a+c)0,试判断此三角形的形状【分析】把所给的等式能进行因式分解的要因式分解,整理为非负数
54、相加得0的形式,求出三角形三边的关系,进而判断三角形的形状解:a2+2b2+c22b(a+c)0a22ab+b2+b22bc+c20(ab)2+(bc)20ab0且bc0即abc,故该三角形是等边三角形【点评】当对多项式的局部因式分解后,变成了几个非负数的和为0,则这几个非负数同时为0,从而判断出该三角形的形状17(6分)已知:如图,ABC和DBE均为等腰直角三角形(1)求证:ADCE;(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由【分析】(1)要证ADeqoac(,CE),只需证明ABDCBE,由于ABC和DBE均为等腰直角三角形,所以易证得结论(2
55、)延长AD,根据(1)的结论,易证AFCABC90,所以ADCE解:(eqoac(,1))ABC和DBE均为等腰直角三角形,ABBC,BDBE,ABCDBE90,ABCDBCDBEDBC,即ABDCBE,ABDCBE,ADCE(2)垂直延长AD分别交BC和CE于G和F,ABDCBE,BADBCE,BAD+ABC+BGABCE+AFC+CGF180,又BGACGF,AFCABC90,ADCE【点评】利用等腰三角形的性质,可以证得线段和角相等,为证明全等和相似奠定基础,从而进行进一步的证明四、(本大题共3小题,每小题8分,共24分)18(8分)在直角坐标系中,已知点A(a+b,2a)与点B(a5,
56、b2a)关于y轴对称(1)求A、B两点的坐标;(2)如果点B关于x轴的对称点是C,在图中标出点A、B、eqoac(,C),并求ABC的面积(【分析】1)根据在平面直角坐标系中,关于y轴对称时,横坐标为相反数,纵坐标不变,得出方程组求出a,b即可解答本题;(2)根据点B关于x轴的对称的点是C,得出C点坐标,进而利用三角形面积公式求出即可解:(1)点A(a+b,2a)与点B(a5,b2a)关于y轴对称解得:点A、B的坐标分别为:(4,1)、(4,1);(2)点B关于x轴对称的点是C,C点坐标为:(4,1)eqoac(,A)BC的面积为:【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号
57、的确定方法以及三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键19(8分)如图,ABC中,ACB90,ACBC,直线l过点C,BDl,AEl,垂足分别为D、E(1)当直线l不与底边AB相交时,求证:EDAE+BD;(2)如图2,将直线l绕点C顺时针旋转,使l与底边AB相交时,请你探究ED、AE、BD三者之间的数量关系(【分析】1)根据垂直定义求出AECBDC90,求出EAC+ACE90,BCD+ACE90,求出EACBCD,根据AAS推出AECCDB,根据全等三角形的性质推出CEBD和AECD即可;(2)根据垂直定义求出AECBDC90,求出EAC+ACE90,BCD+ACE90,求出E
58、ACBCD,根据AAS推出AECCDB,根据全等三角形的性质推出CEBD和AECD即可(1)证明:直线l过点C,BDl,AEl,AECBDC90,ACB90,EAC+ACE90,BCD+ACE90,EACBCD,在AEC和CDB中AECCDB(AAS),CEBD,AECD,EDCE+CD,EDAE+BD;(2)解:EDBDAE,理由是:直线l过点C,BDl,AEl,AECBDC90,ACB90,EAC+ACE90,BCD+ACE90,EACBCD,在AEC和CDB中AECCDB(AAS),CEBD,AECD,EDCECD,EDBDAE【点评】本题考查了垂直定义,三角形内角和定理,全等三角形的性
59、质和判定的应用,能求出AECCDB(是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等20(8分)某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?(【分析】1)可设乙种款型的T恤衫购进x件,则甲种
60、款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30,解得x40,经检验,x40是原方程组的解,且符合题意,1.5x60答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)160,16030130(元),13060%60+16060%(402)1601(1+60%)0.5(402)4680+19206405960(元)答:售完这批T恤衫商店共获利5960元【点评】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双流区劳务派遣合同范本
- 原油天然气销售合同范本
- 加盟店品牌转让合同范本
- 劳动合同的变更补充协议
- 喷粉设备转让合同协议书
- 商铺搬迁补偿协议书范本
- 交通赔偿死亡协议书范本
- 健康行业调理协议书范本
- 亚马逊卖家转让合同范本
- 双方约定房产价格协议书
- GB/T 20671.1-2006非金属垫片材料分类体系及试验方法第1部分:非金属垫片材料分类体系
- 熵权法教学讲解课件
- 医师病理知识定期考核试题与答案
- 电子工业出版社小学-信息技术-第五册-5年级-上册-全册课件
- 课堂因“融错·容错·溶措”而精彩
- 阳光晾衣房钢结构专项施工方案
- 安宁疗护服务流程
- 肿瘤科实习生入科培训课件
- 热分析DSC培训new
- 注塑机安全操作规程
- 运动处方(课堂PPT)
评论
0/150
提交评论