2005年研究入学考试复试题_第1页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2005 年研究入学信号与系统复试题一、填空题(每题sin t (1) (t 2)dt 。et12已知信号 f (t) tu(t) u(t1) ,则 的偶分量。3系统稳定的充分必h(t) 。4已知e(t) u(t) u(t 1) ,;两个离散时间序列分别为x(n) 1,2,3,4, y(n) 3,4,5,起始位置均为n 0 ,。5已知 f (t) 的变换为tf (t)。( )变换为 Fo () ,则信号 f (t) f0 (tn 1 )n6 已知 f0 (t) 的Fn 。7无失真传输系统的冲。2s22s 18若f (0 ) ;若某因果离散时间序列 x(n) 的 Z 变F (s)3261116换

2、为 X (z)。z(z1sef (t) 9。( )2n10 n。二、选择题(每题 2 分,共 20 分)1 u(4 t 2 ) ,(C(t 2 4) ,n0.75n) 分别是信号其中 n 为整数.,(B(D期,数;,能量抽样,非周期;功率,能量,数字,非周期。该系统。不变、线性、不稳定;数字,周期,2连续时间系统的输入e(t) 和输出r(t) 满足(t(C时变、性、稳定;果、时、线性、稳定;(B)(D)非因果、时不变、线性、稳定。3电压信号为一矩形脉冲,脉冲宽度为2 s ,幅值为3V ,则该信号的有效带宽和变换的最大幅值分别为。(A)500 kHz , 6 V ;(B)500 kHz , 6

3、106 Vs ;(C) 1MHz , 3 V ;(D) 1MHz , 6 106 Vs 。4下图所示的零极点分布图中,稳定的最小相移网络、全通网络的个数分别是。(A)1,0;(B)2,1;(C)1,1;(D)2,2。5若某连续线性时不变系统的特征方程包含一个二阶极点a ,则对应的。解形式为:(B) eat ( A(A)(C)() ;1A ) 。(D) eat ( A;136某低频信号 f (t) Sa(6103 t) ,该信号经cos(2 106t) 调制后得到的信号g(t) 所占据的频率范围为H ,则 fL 和 fH 分别为。(A) 998kHz,1002kHz;(C) 1000kHz,10

4、02kHz; 7某带限信号 f (t) 最高截止频率(A) 1MHz;(C) 2MHz,1002kHz;(B) 997kHz,1003kHz;(D) 996kHz,1002kHz。fm 2MHz ,则其奈(B) 4MHz;(D) 8MHz。频率为。8函数sgn(t 2 4) 等价于下面那个函数?。(A) u(t 2) u(t 2)(B) 1 2u(t 2) 2u(t 2)(C) 1 2u(t 2) 2u(t 2)(D) u(t 2) u(t 2) u(t 2)9以T 为周期的信号 f (t) 的三角形式的条件是。级数展开只含基波、奇次谐波正弦分量的f (t) f (t) 且 f (t) f (

5、t T ) ;f (t) f (t) 且 f (t) f (t T ) ;(A)(B)22(C)f (t) f (t) 且 f (t) f (t T ) ;(D)f (t) f (t) 且 f (t) f (t T ) 。2210下面各系统函数所描述的系统中临界稳定系统个数为。2s 1;(2)因果系统H (s) 2s 1 ;(3)因果系统H (s) 2s 1(1) 因果系统H (s) ;s3 2s 2s 3 ss4 2s 2 12s 1因果系统H (s) 1;。s3 2s2(B)2;(C)3;(D)4。三、判断题(每题 1 分,共 10 分)1线性时不变系定是因果系统。()强迫响应属于零状态响应的一部分。既是奇谐又是奇的周期函数只含奇次谐波的余弦分量。信号的等效时宽越大,等效的带宽越大。增加理想低通滤波器的截止频率可以消除阶跃响应的 9%上冲。 6若r(n) nu(n) ,则u(n) r(n 1) r(n) 。7圆外的极点对应的逆 Z 变换一定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论