2020~2021学年秋季学期概率论与数理统计C课程期中考试试题_第1页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、20102011学年秋季学期 概率论与数理统计C 课程期中考试试题第 页第 页20202021学年秋季学期 概率论与数理统计C 课程期中考试试题一、选择题1、设事件A,B的概率为P(A),P(B),则P(AB)=( )(A)P(A)(B)P(B)(C)P(A)+P(B)(D)P(A)+P(B)P(AB)2、设为连续型随机变量的密度函数,F(x)为分布函数,则( ) (A)(B)(C)(D)3、设X在0,5上服从均匀分布,则方程有实根的概率为( ) (A)(B)(C)(D)14、设X服从标准正态分布XN(0,1),则P(X0)=( )(A)0(B)1(C)0.5(D)无法确定5、若两随机事件A,

2、B同时出现的概率P(AB)=0,则下列结论正确的是( ) (A)A与B互斥(B)AB是不可能随机事件(C)AB未必是不可能随机事件(D)P(A)=0或P(B)=06、随机事件A,B,满足和,则有( ) (A)(B)AB=(C)(D)P(A-B)=07、设,则( ) (A)A与B互不相容(B)A与B互逆(C)A与B相互独立(D)A与B不独立二、填空题1、设事件A、B的概率分别为,当A与B独立时,P()_.2、已知在10件产品中有2只次品,在其中取两次,每次取一只,作不放回抽样,则两只都是次品的概率为_.3、设连续型随机变量X的密度函数为,则其中的常数k=_.4、设XN(0,1),YN(1,8),

3、X,Y相互独立,则XY的密度函数为_.5、设随机变量X,Y相互独立,分别是随机变量X,Y的分布函数,令Z=maxX,Y,Z的分布函数Fz(z)=_.6、设X与Y是两个随机变量,且,则=_.7、设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_.三、已知,求。四、甲、乙、丙三人独立地去破译一份密码,已知各人能译出的概率为,问三人中至少有一人能将此密码译出的概率是多少?五、某种电子管的寿命X(小时)的概率密度为一台仪器装有三个这种电子管,(假设三个电子管的寿命是相互独立的)(1)求在最初使用的150小时内,三个电子管都未被替换的概率;(2)求

4、在最初使用的150小时内,恰有一个电子管被替换的概率。六、设电源电压xN(220,252),已知在x200时,元件损坏的概率为0.1,当200 x240时,元件损坏的概率为0.001,当x240时,元件损坏的概率为0.2,现有2个元件组成电器,是否损坏相互独立.求(1)在串联的情况下,电器损坏的概率;(2)在并联的情况下,电器损坏的概率。(查表)七、设二维随机变量(X,Y)在曲线y=x2与x=y2所围成的区域D中服从均匀分布,求:(1)(X,Y)的联合密度函数;(2)X,Y边缘密度函数fX(x),fY(y),并判断X,Y是否相互独立;(3)。八、设X,Y相互独立,分别服从参数为l,m的指数分布,即引入新的变量(1)求(X,Y)的联合密度函数;(2)求Z的分布律和分布函数。答案一、 1-7 DCACCCC二、 1、2、3、24、5、F1(z)F2(z)6、7、三、解:四、解:设A,B,C分别表示甲、乙、丙能破译密码,则至少有一人能破解密码五、解:(1)三只都完好的概率为:(2)恰有一只被替换的概率为:六、解:A1,A2,A3分别表示电源电压三事件B表示电子元件损坏由全概率公式得一个元件损坏的概率为(1)在串联的情况下,电器损坏的概率为(2)在串联的情况下,电器损坏的概率为七、解:(1)曲线y=x2与x=y2所围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论