版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、绝密启用前 2003年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.第卷 (共110分)一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分1函数的最小正周期T= .2若
2、 .3在等差数列中,a5=3, a6=2,则a4+a5+a10= 4在极坐标系中,定点A点B在直线上运动,当线段AB最短 时,点B的极坐标是 5在正四棱锥PABCD中,若侧面与底面所成二面角的大小为60,则异面直线PA与BC所成角的大小等于 .(结果用反三角函数值表示)6设集合A=x|x|0, 则集合x|xA且= .7在ABC中,sinA;sinB:sinC=2:3:4,则ABC= .(结果用反三角函数值表示)8若首项为a1,公比为q的等比数列的前n项和总小于这个数列的各项和,则首项a1,公比q的一组取值可以是(a1,q)= .9某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成
3、.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示)10方程x3+lgx=18的根x .(结果精确到0.1)11已知点其中n的为正整数.设Sn表示ABC外接圆的面积,则= .12给出问题:F1、F2是双曲线=1的焦点,点P在双曲线上.若点P到焦点F1的距离等于9,求点P到焦点F2的距离.某学生的解答如下:双曲线的实轴长为8,由 |PF1|PF2|=8,即|9|PF2|=8,得|PF2|=1或17. 该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,将正确的结果填在下面空格内.二、选择题(本大题满分16分)本大题共4题,每题都给出代号为
4、A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.13下列函数中,既为偶函数又在(0,)上单调递增的是( )Ay=tg|x|.By=cos(x).CD. 14在下列条件中,可判断平面与平行的是( )A、都垂直于平面r.B内存在不共线的三点到的距离相等.Cl,m是内两条直线,且l,m.Dl,m是两条异面直线,且l,m, l,m.15a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么“”是
5、“M=N”的( )A充分非必要条件.B必要非充分条件.C充要条件D既非充分又非必要条件.16f()是定义在区间c,c上的奇函数,其图象如图所示:令g()=af()+b,则下 列关于函数g()的叙述正确的是( )A若a0,则函数g()的图象关于原点对称.B若a=1,2b0,则方程g()=0有大于2的实根.C若a0,b=2,则方程g()=0有两个实根.D若a1,b0,且a1)的图象与y=x的图象有公共点,证明: f(x)=axM; (3)若函数f(x)=sinkxM ,求实数k的取值范围. 2003年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)答案一、(第1题至第12题)1. 2. 3
6、49 . 4. 5arctg2. 61,3.7 8的一组数). 9 102.6 .114 12|PF2|=17.二、(第13题至第16题)题 号13141516代 号CD DB三、(第17题至第22题)17解 故的最大值为最小值为. 18解连结BD,因为B1B平面ABCD,B1DBC,所以BCBD.在BCD中,BC=2,CD=4,所以BD=.又因为直线B1D与平面ABCD所成的角等于30,所以B1DB=30,于是BB1=BD=2.故平行六面体ABCDA1B1C1D1的体积为SABCDBB1=.19解(1) (2)归纳概括的结论为:若数列是首项为a1,公比为q的等比数列,则20解(1)如图建立直
7、角坐标系,则点P(11,4.5), 椭圆方程为.将b=h=6与点P坐标代入椭圆方程,得.因此隧道的拱宽约为33.3米.(2)解一由椭圆方程,得故当拱高约为6.4米、拱宽约为31.1米时,土方工程量最小.解二由椭圆方程,得 于是得以下同解一.21解(1)设得 所以v30,得v=8,故=6,8.(2)由=10,5,得B(10,5),于是直线OB方程:由条件可知圆的标准方程为:(x3)2+y(y+1)2=10, 得圆心(3,1),半径为.设圆心(3,1)关于直线OB的对称点为(x ,y)则故所求圆的方程为(x1)2+(y3)2=10.(3)设P (x1,y1), Q (x2,y2) 为抛物线上关于直
8、线OB对称两点,则故当时,抛物线y=ax21上总有关于直线OB对称的两点. 22解(1)对于非零常数T,f(x+T)=x+T, Tf(x)=Tx. 因为对任意xR,x+T= Tx不能恒成立,所以f(x)=(2)因为函数f(x)=ax(a0且a1)的图象与函数y=x的图象有公共点,所以方程组:有解,消去y得ax=x,显然x=0不是方程ax=x的解,所以存在非零常数T,使aT=T. 于是对于f(x)=ax有 故f(x)=axM.(3)当k=0时,f(x)=0,显然f(x)=0M.当k0时,因为f(x)=sinkxM,所以存在非零常数T,对任意xR,有f(x+T)=T f(x)成立,即sin(kx+
9、kT)=Tsinkx .因为k0,且xR,所以kxR,kx+kTR,于是sinkx 1,1,sin(kx+kT) 1,1,故要使sin(kx+kT)=Tsinkx .成立,只有T=,当T=1时,sin(kx+k)=sinkx 成立,则k=2m, mZ . 当T=1时,sin(kxk)=sinkx 成立,即sin(kxk+)= sinkx 成立,则k+=2m, mZ ,即k=2(m1) , mZ .综合得,实数k的取值范围是k|k= m, mZ一.集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.
10、你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间-a,a上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加
11、符号“”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不
12、等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即ab0,a0.三.数列24.解决一些等比
13、数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。四. HYPERLINK /search.aspx t /content/19
14、/1226/14/_blank 三角函数29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)33.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、
15、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.(3)点的平移公式:点按向量平移到点,则.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38
16、.形如的周期都是,但的周期为。39.正弦定理时易忘比值还等于2R.五.平面向量40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。41.数量积与两个实数乘积的区别:在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.已知实数,且,则a=c,但在向量的数量积中没有.在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。六.解析几何43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?44.用到角公式时
17、,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。45.直线的倾斜角、到的角、与的夹角的取值范围依次是。46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?47.对不重合的两条直线(建议在解题时,讨论后利用斜率和截距)48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(设出变量,写出目标函数写出线性约束条件画出可行域作出目标函数对应的系列平行线,找到并求出最优解应用题一定要有答。)50.三种圆锥曲线的定义、
18、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).55.解析几何问题的求解中,平面几何知识利用了吗?题
19、目中是否已经有坐标系了,是否需要建立直角坐标系?七.立体几何56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条
20、相交直线分别平行”而导致证明过程跨步太大.60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?63.两条异面直线所成的角的范围:090直线与平面所成的角的范围:0o90二面角的平面角的取值范围:018064.你知道异面直线上两点间的距离公式如何运用吗?65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)68.球及其性质;经纬度定义易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗?八.排列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渠道培训合同范本
- 苗木维护合同范本
- 莫衡签约协议书
- 认股比例协议书
- 设备代理协议书
- 设备抵款协议书
- 设计无责协议书
- 评审费合同范本
- 请教帮扶协议书
- 快手网红协议书
- 贵州兴义电力发展有限公司2026年校园招聘备考题库及一套参考答案详解
- 2025年天津大学管理岗位集中招聘15人备考题库完整答案详解
- 2025内蒙古鄂尔多斯市鄂托克旗招聘专职社区人员30人考试笔试备考试题及答案解析
- 三方协议模板合同
- 2026年元旦校长寄语:向光而行马到新程
- 玉米质押合同范本
- 钢结构报废回收合同2025年版本
- 节能基本情况表(打印)
- 电动车转让合同协议书电子版
- 大学生创业计划书word文档(三篇)
- 材料科学基础辅导与习题-上交课件 材料科学基础教程及习题 上海交通大学
评论
0/150
提交评论