全等三角形解题常用方法与综合练习2_第1页
全等三角形解题常用方法与综合练习2_第2页
全等三角形解题常用方法与综合练习2_第3页
全等三角形解题常用方法与综合练习2_第4页
全等三角形解题常用方法与综合练习2_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE 全等三角形综合复习切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。例1. 如图,四点共线,。求证:。例2. 如图,在中,是ABC的平分线,垂足为。求证:。例3. 如图,在中,。为延长线上一点,点在上,连接和。求证:。例4. 如图,/,/,求证:。例5. 如图,分别是外角和的平分线,它们交于点。求证:为的平分线。例6. 如图,是的边上的点,且,是的中线。求证:。例7. 如图,在中,为上任意一点。求证:。全等三角形综合复习7月22日作业一、选择题:1. 能使两个直角三角形全等的条件是( )A. 两直角边对应相等B. 一锐角对应相等C. 两锐角对应相等

2、D. 斜边相等2. 根据下列条件,能画出唯一的是( )A. ,B. ,C. ,D. ,3. 如图,已知,增加下列条件:;。其中能使的条件有( )A. 4个B. 3个C. 2个D. 1个4. 如图,交于点,下列不正确的是( )A. B. C. 不全等于D. 是等腰三角形5. 如图,已知,则等于( )A. B. C. D. 无法确定二、填空题:6. 如图,在中,的平分线交于点,且,则点到的距离等于_;7. 如图,已知,是上的两点,且,若,则_; 8. 将一张正方形纸片按如图的方式折叠,为折痕,则的大小为_;9. 如图,在等腰中,平分交于,于,若,则的周长等于_;10. 如图,点在同一条直线上,/,

3、/,且,若,则_;三、解答题:11. 如图,为等边三角形,点分别在上,且,与交于点。求的度数。 12. 如图,为上一点,交延长线于点。求证:。答案例1. 思路分析:从结论入手,全等条件只有;由两边同时减去得到,又得到一个全等条件。还缺少一个全等条件,可以是,也可以是。由条件,可得,再加上,可以证明,从而得到。解答过程:,在与中(HL),即在与中(SAS)解题后的思考:本题的分析方法实际上是“两头凑”的思想方法:一方面从问题或结论入手,看还需要什么条件;另一方面从条件入手,看可以得出什么结论。再对比“所需条件”和“得出结论”之间是否吻合或具有明显的联系,从而得出解题思路。小结:本题不仅告诉我们如

4、何去寻找全等三角形及其全等条件,而且告诉我们如何去分析一个题目,得出解题思路。例2. 思路分析:直接证明比较困难,我们可以间接证明,即找到,证明且。也可以看成将“转移”到。那么在哪里呢?角的对称性提示我们将延长交于,则构造了FBD,可以通过证明三角形全等来证明2=DFB,可以由三角形外角定理得DFB=1+C。解答过程:延长交于在与中(ASA 又 。解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。例3. 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。以线段为边的绕点顺时针旋转到的位置,而线段正好是的边,故只要证明它们全等即可。解答过程:

5、,为延长线上一点在与中(SAS)。解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。例4. 思路分析:关于四边形我们知之甚少,通过连接四边形的对角线,可以把原问题转化为全等三角形的问题。解答过程:连接/,/,在与中(ASA)。解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。例5. 思路分析:要证明“为的平分线”,可以利用点到的距离相等来证明,故应过点向作垂线;另一方面,为了利

6、用已知条件“分别是和的平分线”,也需要作出点到两外角两边的距离。解答过程:过作于,于,于平分,于,于平分,于,于,且于,于为的平分线。解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。例6. 思路分析:要证明“”,不妨构造出一条等于的线段,然后证其等于。因此,延长至,使。解答过程:延长至点,使,连接在与中(SAS),又,在与中(SAS)又。解题后的思考:三角形中倍长中线,可以构造全等三角形,继而得出一些线段和角相等,甚至可以证明两条直线平行。例7. 思路分析:欲证,不难想到利用三角形中三边的不等关系

7、来证明。由于结论中是差,故用两边之差小于第三边来证明,从而想到构造线段。而构造可以采用“截长”和“补短”两种方法。解答过程:法一:在上截取,连接在与中(SAS)在中,即ABACPBPC。法二:延长至,使,连接在与中(SAS)在中, 。解题后的思考:当已知或求证中涉及线段的和或差时,一般采用“截长补短”法。具体作法是:在较长的线段上截取一条线段等于一条较短线段,再设法证明较长线段的剩余线段等于另外的较短线段,称为“截长”;或者将一条较短线段延长,使其等于另外的较短线段,然后证明这两条线段之和等于较长线段,称为“补短”。小结:本题组总结了本章中常用辅助线的作法,以后随着学习的深入还要继续总结。我们

8、不光要总结辅助线的作法,还要知道辅助线为什么要这样作,这样作有什么用处。同步练习的答案一、选择题:1. A2. C3. B4. C5. C二、填空题:6. 47. 8. 9. 1010. 6三、解答题:11. 解:为等边三角形,在与中(SAS)。12. 证明:,在与中(AAS)。略说全等三角形解题方法证明三角形全等的基本思路在证明两个三角形全等时,选择三角形全等的五种方法(“SSS”,“SAS”,“ASA”,“AAS”,“HL”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边的夹角用“SAS”或再找第三组对应边用“

9、SSS”;若找到一组角则需找另一组角(可能用“ASA”或“AAS”)或夹这个角的另一组对应边用“SAS”;若是判定两个直角三角形全等则优先考虑“HL”。上述可归纳为:证明三角形全等的方法、平移法构造全等三角形例如图所示,四边形中,平分,若,求证:。分析:利用角平分线构造三角形,将转移到,而与互补,从而证得。主要方法是:“线、角进行转移”。证明:在上截取,在与中,(SAS),,,.、翻折法构造全等三角形例如图所示,已知中,平分,求证:。证明:平分,将沿翻折后,点落在上的点,则有,在与中,(SAS), 已知中,,。3、旋转法构造全等三角形例3如图3所示,已知点、分别在正方形的边与上,并且平分,求证

10、:。分析:本题要证的和不在同一条直线上,因而要设法将它们“组合”到一起。可将绕点旋转到,则,=,从而将转化为线段,再进一步证明即可。证明略。4、延长法构造全等三角形例4如图4所示,在中,求证:。分析:证明一条线段等于另两条线段之和,常用的方法是延长一条短线段使其等于长线段,再证明延长部分与另一短线段相等即可;或者在长线段上截取一条线段等于短线段,再证明余下部分等于另一条短线段。本题可延长至,使,构造,然后证明,就可得。5、截取法构造全等三角形例5如图5所示,在中,边上的高为,又,求证:。分析:欲证明,可以在上截取一线段等于,再证明另一线段等于。如果截取(如图所示),则可认为而沿翻折而来,从而只

11、需证明即可。证明略。构造全等三角形解题的技巧全等三角形是初中几何三角形中的一个重要内容,是初中生必须掌握的三角形两大知识点之一(全等和相似),在解决几何问题时,若能根据图形特征添加恰当的辅助线,构造出全等三角形,并利用全等图形的性质,可以使问题化难为易,出奇制胜,现举几例供大家参考。友情提示:证明三角形全等的方法有SAS、SSS、AAS、ASA、HL(Rt)。一、见角平分线试折叠,构造全等三角形例1 如图1,在ABC中,AD平分BAC,AB+BD=AC。求证:B:C=2:1。证法一:在线段AC上截取AE=AB,连接DE。在ABD和AED中,AE=AB,1=2,AD=AD,ABDAED。DE=D

12、B,B=AED。AB+BD=AC,AE+DE=AC。又AE+CE=AC,DE=CE。C=EDC。AED=C+EDC,AED=2C,即B=2C。B:C=2:1。图1证法二:延长AB到F,使BF=BD,连接DF。F=BDF。ABC=F+BDF,ABC=2F。AB+BD=AC,AB+BF=AC,即AF=AC。在ADF和ADC中,AF=AC,1=2,AD=AD,ADFADC。F=C。又ABC=2F,ABC=2C,即ABC:C=2:1。图2点评:见到角平分线时,既可把ABD沿AD折叠变成AED,也可把ACD沿AD折叠变成AFD,利用全等三角形的性质,可使问题得以解决。练习:如图3,ABC中,AN平分BA

13、C,CNAN于点N,M为BC中点,若AC=6,AB=10,求MN的长。图3提示:延长CN交于AB于点D。则ACNADN,AD=AC=6。又AB=10,则BD=4。可证为BCD的中位线。点评:本题相当于把ACN沿AN折叠成AND。二、见中点“倍长”线段,构造全等三角形例2 如图4,AD为ABC中BC上的中线,BF分别交AC、AD于点F、E,且AF=EF,求证:BE=AC。图4证明:延长AD到G,使DG=AD,连接BG。AD为BC上的中线,BD=CD,在ACD和GBD中,AD=DG,ADC=BDG,BD=CD,ACDGBD。AC=BG,CAD=G。AF=EF,CAD=AEF。G=AEF=BEG,B

14、E=BG,AC=BG,BE=AC。点评:见中线AD,将其延长一倍,构造GBD,则ACDGBD。例3 如图5,两个全等的含有、角的三角极ADE和ABC如图放置,E、A、C三点在同一直线上,连接BD,取BD中点M,连接ME、MC图5试判断EMC的形状,并说明理由。解析:EMC为等腰直角三角形。理由:分别延长CM、ED,使其相交于点N,可证BCMDNM。则BC=DN,CM=NM。由于DEAACB,则DE=AC,AE=BC,DE+DN=AC+AE。即EN=EC,则ENC为等腰直角三角形。CM=NM,EMCN,则可知EMC为等腰直角三角形。注:本题也可取EC的中点N,连接MN,利用梯形中位线定理来证明。

15、亦可连接AM,利用角的度数来证明。练习1:如图6,在平行四边形ABCD中,E为AD中点,连接BE、CE,BEC=,图6求证:(1)BE平分ABC。(2)若EC=4,且,求四边形ABCE的面积。提示:见图中所加辅助线,证ABEDFE。练习2:ABC中,AC=5,中线AD=7,则AB的取值范围为多少?注:延长AD到E,使DE=AD,连接BE。则BDECDA。BE=AC=5,DE=AD=7。在ABE中,BE=5,AE=14。利用三角形三边关系可求线段AB的取值范围为:9AB19。三、构造全等三角形,证线段的和差关系例4 如图7,点E、F分别在正方形ABCD的边BC、CD上,且1=2。图7求证:BE+DF=AE。证明:延长CB到G,使BG=DF,连接AG。在ABG和ADF中,AB=AD,ABG=D=,BG=DF,ABGADF。G=AFD,4=1。1=2,4=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论