2022届河南省郑州市106高考冲刺数学模拟试题含解析_第1页
2022届河南省郑州市106高考冲刺数学模拟试题含解析_第2页
2022届河南省郑州市106高考冲刺数学模拟试题含解析_第3页
2022届河南省郑州市106高考冲刺数学模拟试题含解析_第4页
2022届河南省郑州市106高考冲刺数学模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的图象如图所示,则下列说法错误的是( )A函数在上单调递减B函数在上单调递增C函数的对称中心是D函数的对称轴是2已知 ,且是的充分不必要条件,则的取值范围是( )A

2、BCD3二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A180B90C45D3604已知函数在区间有三个零点,且,若,则的最小正周期为( )ABCD5观察下列各式:,根据以上规律,则( )ABCD6洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD7已知等差数列的前项和为,若,则等差数列公差()A2BC3D48如图1,九章算术中记载了一个“折竹抵地”问题:今有竹高一丈

3、,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺. ABCD9若复数满足,则的虚部为( )A5BCD-510已知,则 ()ABCD11若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A36 cm3B48 cm3C60 cm3D72 cm312已知命题:使成立 则为( )A均成立B均成立C使成立D使成立二、填空题:本题共4小题,每小题5分,共20分。13如图,在直四棱柱中,底面是平行四边形,点是棱的中点,点是棱靠近的三等分点,且三棱锥的体积为2,则四棱柱的体积为_

4、14函数的值域为_.15在三棱锥中,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为_.16已知向量,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,曲线在点处的切线方程为求a,b的值;证明:18(12分)如图,平面四边形为直角梯形,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.19(12分)已知抛物线上一点到焦点的距离为2,(1)求的值与抛物线的方程;(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范

5、围.20(12分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?21(12分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为

6、,求在区间上的最大值22(10分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.【详解】由图象可得,函数的周期,所以.将点代入中,得,解得,由,可得,所以.令,得,故函数在上单调递减,当时,函数在上单调递减,故A正确;令,得,故函数在上单调递增.当时,函数在上单调递增,故B错误;令,得,故函数的对称中心是,故C正确;令,得,故函数的对称轴是,故D正确.故选:B.【点睛】本题考查

7、由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.2D【解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.3A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,令,则,.考点:1.二项式定理;2.组合数的计算.4C【解析】根据题意,知当时,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】

8、解:由于在区间有三个零点,当时,由对称轴可知,满足,即.同理,满足,即,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.5B【解析】每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算【详解】以及数列的应用根据题设条件,设数字,构成一个数列,可得数列满足,则,故选:B【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项6A【解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其

9、和等于11包含的基本事件有:,共4个,其和等于的概率故选:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题7C【解析】根据等差数列的求和公式即可得出【详解】a1=12,S5=90,512+ d=90,解得d=1故选C【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题8B【解析】如图,已知,解得, ,解得.折断后的竹干高为4.55尺故选B.9C【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题10B【解

10、析】利用诱导公式以及同角三角函数基本关系式化简求解即可【详解】,本题正确选项:【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力11B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.12A【解析】试题分析:原命题为特称命题,故其否定为全称命题,即考点:全称命题.二、填空题:本题共4小题,每小题5分,共20分。1312【解析】由题意,设底面平行四边形的,且边上的高为,直四棱柱的高为,分别表示出直四棱柱的体积和三棱锥的体积,即可求解。【详解】由题意,设底面平行四边形的,且边上的高为,直

11、四棱柱的高为,则直四棱柱的体积为,又由三棱锥的体积为,解得,即直四棱柱的体积为。【点睛】本题主要考查了棱柱与棱锥的体积的计算问题,其中解答中正确认识几何体的结构特征,合理、恰当地表示直四棱柱三棱锥的体积是解答本题的关键,着重考查了推理与运算能力,以及空间想象能力,属于中档试题。14【解析】利用配方法化简式子,可得,然后根据观察法,可得结果.【详解】函数的定义域为所以函数的值域为 故答案为:【点睛】本题考查的是用配方法求函数的值域问题,属基础题。15【解析】根据题意作出图象,利用三垂线定理找出二面角的平面角,再设出的长,即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得

12、出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.【详解】如图所示:过点作面,垂足为,过点作交于点,连接.则为二面角的平面角的补角,即有.易证面,而三角形为等边三角形, 为的中点.设, .故三棱锥的体积为当且仅当时,即.三点共线.设三棱锥的外接球的球心为,半径为.过点作于,四边形为矩形.则,在中,解得.三棱锥的外接球的表面积为.故答案为:【点睛】本题主要考查三棱锥的外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,意在考查学生的直观想象能力,数学运算能力和逻辑推理能力,属于较难题.16【解析】求出,然后由模的

13、平方转化为向量的平方,利用数量积的运算计算【详解】由题意得,.,.,.故答案为:【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础本题关键是用数量积的定义把模的运算转化为数量积的运算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)见解析【解析】分析:第一问结合导数的几何意义以及切点在切线上也在函数图像上,从而建立关于的等量关系式,从而求得结果;第二问可以有两种方法,一是将不等式转化,构造新函数,利用导数研究函数的最值,从而求得结果,二是利用中间量来完成,这样利用不等式的传递性来完成,再者这种方法可以简化运算.详解:(1)解:,由题意有,解得(2)证明

14、:(方法一)由(1)知,.设则只需证明 ,设则, 在上单调递增,使得且当时,当时,当时,单调递减当时,单调递增 ,由,得, ,设, 当时,在单调递减, ,因此(方法二)先证当时, ,即证设,则,且,在单调递增,在单调递增,则当时,(也可直接分析 显然成立)再证设,则,令,得且当时,单调递减;当时,单调递增. ,即又,点睛:该题考查的是有关利用导数研究函数的综合问题,在求解的过程中,涉及到的知识点有导数的几何意义,有关切线的问题,还有就是应用导数证明不等式,可以构造新函数,转化为最值问题来解决,也可以借用不等式的传递性,借助中间量来完成.18(1);(2).【解析】(1)连接交于点,连接,利用线

15、面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,在梯形中,则,所以,;(2)取中点,连接、,过点作,则,作于,连接. 为的中点,且,且,所以,四边形为平行四边形,由于,为的中点,所以,同理,平面,为面与面所成的锐二面角,则,平面,平面,面,为与底面所成的角,.在中,.因此,与平面所成角的正弦值为.【点睛】本题考查利用线面平行的性质求参数,同时也考查

16、了线面角的计算,涉及利用二面角求线段长度,考查推理能力与计算能力,属于中等题.19(1)1;(2)【解析】(1)根据点到焦点的距离为2,利用抛物线的定义得,再根据点在抛物线上有,列方程组求解,(2)设,根据,再由,求得,当,即时,直线斜率不存在;当时,令,利用导数求解,【详解】(1)因为点到焦点的距离为2,即点到准线的距离为2,得,又,解得,所以抛物线方程为(2)设,由由,则当,即时,直线斜率不存在;当时,令,所以在上分别递减则【点睛】本题主要考查抛物线定义及方程的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题,20(1)(2)【解析】试题分析:(1)由条件可先求水平方向每根支条长,

17、竖直方向每根支条长为,因此所需木料的长度之和L=(2)先确定范围由可得,再由面积为130 cm2,得,转化为一元函数,令,则在上为增函数,解得L有最小值试题解析:(1)由题意,水平方向每根支条长为cm,竖直方向每根支条长为cm,菱形的边长为cm从而,所需木料的长度之和L=cm(2)由题意,即,又由可得所以令,其导函数在上恒成立,故在上单调递减,所以可得则=因为函数和在上均为增函数,所以在上为增函数,故当,即时L有最小值答:做这样一个窗芯至少需要cm长的条形木料考点:函数应用题21(1)单调递增区间是,单调递减区间是和;(2)最大值是【解析】(1)求得,由题意可知和是函数的两个零点,根据函数的符

18、号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(2)由(1)中的结论知,函数的极小值为,进而得出,解出、的值,然后利用导数可求得函数在区间上的最大值.【详解】(1),令,因为,所以的零点就是的零点,且与符号相同又因为,所以当时,即;当或时,即.所以,函数的单调递增区间是,单调递减区间是和; (2)由(1)知,是的极小值点,所以有,解得, ,所以因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是【点睛】本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.22 (1)证明见解析 (2) 【解析】(1)连接交于点,由三角形中位线定理得,由此能证明平面(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论