




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、计量经济学导论ch8课件计量经济学导论ch8课件Consequences of heteroscedasticity for OLSOLS still unbiased and consistent under heteroscedastictiy!Also, interpretation of R-squared is not changedHeteroscedasticity invalidates variance formulas for OLS estimatorsThe usual F-tests and t-tests are not valid under heterosced
2、asticity Under heteroscedasticity, OLS is no longer the best linear unbiased estimator (BLUE); there may be more efficient linear estimatorsUnconditional error variance is unaffected by heteroscedasticity (which refers to the conditional error variance) Multiple Regression Analysis: Heteroscedastici
3、tyConsequences of heteroscedastiHeteroscedasticity-robust inference after OLSFormulas for OLS standard errors and related statistics have been developed that are robust to heteroscedasticity of unknown formAll formulas are only valid in large samplesFormula for heteroscedasticity-robust OLS standard
4、 errorUsing these formulas, the usual t-test is valid asymptoticallyThe usual F-statistic does not work under heteroscedasticity, but heteroscedasticity robust versions are available in most softwareAlso called White/Eicker standard errors. They involve the squared residuals from the regression and
5、from a regression of xj on all other explanatory variables.Multiple Regression Analysis: HeteroscedasticityHeteroscedasticity-robust infeExample: Hourly wage equationHeteroscedasticity robust standard errors may be larger or smaller than their nonrobust counterparts. The differences are often small
6、in practice.F-statistics are also often not too different.If there is strong heteroscedasticity, differences may be larger. To be on the safe side, it is advisable to always compute robust standard errors.Multiple Regression Analysis: HeteroscedasticityExample: Hourly wage equationHTesting for heter
7、oscedasticityIt may still be interesting whether there is heteroscedasticity because then OLS may not be the most efficient linear estimator anymoreBreusch-Pagan test for heteroscedasticityUnder MLR.4The mean of u2 must not vary with x1, x2, , xkMultiple Regression Analysis: HeteroscedasticityTestin
8、g for heteroscedasticityBreusch-Pagan test for heteroscedasticity (cont.)Regress squared residuals on all expla-natory variables and test whether this regression has explanatory power.A large test statistic (= a high R-squared) is evidence against the null hypothesis.Alternative test statistic (= La
9、grange multiplier statistic, LM). Again, high values of the test statistic (= high R-squared) lead to rejection of the null hypothesis that the expected value of u2 is unrelated to the explanatory variables.Multiple Regression Analysis: HeteroscedasticityBreusch-Pagan test for heterosExample: Hetero
10、scedasticity in housing price equationsIn the logarithmic specification, homoscedasticity cannot be rejectedHeteroscedasticityMultiple Regression Analysis: HeteroscedasticityExample: Heteroscedasticity inWhite test for heteroscedasticityDisadvantage of this form of the White testIncluding all square
11、s and interactions leads to a large number of esti-mated parameters (e.g. k=6 leads to 27 parameters to be estimated)Regress squared residuals on all expla-natory variables, their squares, and in-teractions (here: example for k=3)The White test detects more general deviations from heteroscedasticity
12、 than the Breusch-Pagan testMultiple Regression Analysis: HeteroscedasticityWhite test for heteroscedasticAlternative form of the White testExample: Heteroscedasticity in (log) housing price equationsThis regression indirectly tests the dependence of the squared residuals on the explanatory variable
13、s, their squares, and interactions, because the predicted value of y and its square implicitly contain all of these terms. Multiple Regression Analysis: HeteroscedasticityAlternative form of the White Weighted least squares estimationHeteroscedasticity is known up to a multiplicative constantTransfo
14、rmed modelThe functional form of the heteroscedasticity is knownMultiple Regression Analysis: HeteroscedasticityWeighted least squares estimatExample: Savings and incomeThe transformed model is homoscedasticIf the other Gauss-Markov assumptions hold as well, OLS applied to the transformed model is t
15、he best linear unbiased estimator!Note that this regression model has no interceptMultiple Regression Analysis: HeteroscedasticityExample: Savings and incomeNotOLS in the transformed model is weighted least squares (WLS)Why is WLS more efficient than OLS in the original model?Observations with a lar
16、ge variance are less informative than observa-tions with small variance and therefore should get less weightWLS is a special case of generalized least squares (GLS)Observations with a large variance get a smaller weight in the optimization problemMultiple Regression Analysis: HeteroscedasticityOLS i
17、n the transformed model iExample: Financial wealth equationWLS estimates have considerably smaller standard errors (which is line with the expectation that they are more efficient).Assumed form of heteroscedasticity:Net financial wealthParticipation in 401K pension plan Multiple Regression Analysis:
18、 HeteroscedasticityExample: Financial wealth equaImportant special case of heteroscedasticityIf the observations are reported as averages at the city/county/state/-country/firm level, they should be weighted by the size of the unitAverage contribution to pension plan in firm iAverage earnings and ag
19、e in firm iPercentage firm contributes to planHeteroscedastic error termError variance if errors are homoscedastic at the employee levelIf errors are homoscedastic at the employee level, WLS with weights equal to firm size mi should be used. If the assumption of homoscedasticity at the employee leve
20、l is not exactly right, one can calculate robust standard errors after WLS (i.e. for the transformed model).Multiple Regression Analysis: HeteroscedasticityImportant special case of heteUnknown heteroscedasticity function (feasible GLS)Assumed general form of heteroscedasticity; exp-function is used
21、 to ensure positivityFeasible GLS is consistent and asymptotically more efficient than OLS.Multiplicative error (assumption: independent of the explanatory variables)Use inverse values of the estimated heteroscedasticity funtion as weights in WLSMultiple Regression Analysis: HeteroscedasticityUnknow
22、n heteroscedasticity funExample: Demand for cigarettesEstimation by OLSCigarettes smoked per dayLogged income and cigarette priceReject homo-scedasticitySmoking restrictions in restaurantsMultiple Regression Analysis: HeteroscedasticityExample: Demand for cigarettesEstimation by FGLSDiscussionThe in
23、come elasticity is now statistically significant; other coefficients are also more precisely estimated (without changing qualit. results)Now statistically significantMultiple Regression Analysis: HeteroscedasticityEstimation by FGLSNow statistiWhat if the assumed heteroscedasticity function is wrong?If the heteroscedasticity function is misspecified, WLS is still consistent under MLR.1 MLR.4, but robust standard errors should be computedWLS is consistent under MLR.4 but not neces
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 区县医院面试题及答案
- 药库测试试题及答案
- 呼吸内科临床重点专科
- 白内障护理查房
- 2025年 仓储管理员中级考试练习试卷附答案
- 培训学校年终汇报
- 小蚂蚁手工课课件
- 车展新能源技术研讨会举办合同
- 生态公园场地租赁及环保教育合作合同
- 艺术比赛选手成绩PK合同
- 2025年全国护士资格考试试卷及答案
- 难点01:总集篇·十三种简便计算巧算法【十三大考点】-2024年小升初数学典型例题系列(原卷版+解析)
- 三一挖机合同协议书
- 越秀地产合作协议书
- 上海市普陀区2024-2025学年八年级上学期期末考试物理试题(解析版)
- 胶原蛋白医学科普
- 前厅主管考试试题及答案
- 2025-2030中国焦煤行业市场发展分析及前景趋势与投资研究报告
- 2025年三级电子商务师职业技能鉴定理论考试题库(含答案)
- 带电作业安全课件
- 2025年粮油仓储管理员职业技能竞赛参考试题库(含答案)
评论
0/150
提交评论