案例教案组会dicks report_第1页
案例教案组会dicks report_第2页
案例教案组会dicks report_第3页
案例教案组会dicks report_第4页
案例教案组会dicks report_第5页
免费预览已结束,剩余39页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Three kinds of Cluster Analysis MethodsSupervisor: Tingjun HouReporter: Qian ZhangCluster analysis, which can also be called unsupervised classification, is used to group a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to e

2、ach other than to those in other groups (clusters).Different kinds of Cluster:Cluster analysis, which can also be called unsupervised classification, is used to group a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each

3、other than to those in other groups (clusters).Different kinds of Cluster:Cluster analysis, which can also be called unsupervised classification, is used to group a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each othe

4、r than to those in other groups (clusters).Different kinds of Cluster:K-means clusteringK-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.Algorithm:Distance between centrio

5、ds and pointsk initial centroidsClusterRecalculate centriodsCentriods changeOutput centriodsYNK-means clustering+A,B,C,D=kmeans(data,n); (Matlab)K-means clusteringTime cost: O(num*k*m)Space cost: O(k+m)num : number of the iterations, usually bounded.k: number of the clusterm: number of pointsTime co

6、st O(m)Space cost O(m) Advantage: simple and fast, centroids will be returned.Disadvantage: results depend on the initial centroids, and outliers will influence the clustering. Note: If this method is used, it needs to be done for several time to get the best result.Hierarchical ClusteringHierarchic

7、al clustering is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types: agglomerative and divisive hierarchical clustering.Algorithm:Distance matrixMerge the nearest two points as a clusterAll points be assigne

8、dOutput resultNYAgglomerative: This is a bottom up approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.Agglomerative Hierarchical Clusteringtree=rand(5,6); (Matlab)dist=pdist(tree)10.2077420.1947640.3111020.9797480.5948960.11741820.301

9、2460.2259220.923380.438870.2622120.29667630.4709230.1707080.4302070.1111190.6028430.31877840.2304880.2276640.1848160.2580650.7112160.42416750.8443090.4356990.9048810.408720.2217470.50785812345100.9055160.9376330.8037421.19732920.90551600.7063970.8950050.62161930.9376330.70639700.407080.83934740.8037

10、420.8950050.4070801.09901251.1973290.6216190.8393471.0990120Agglomerative Hierarchical Clustering340.40708250.621619670.706397180.803742link=linkage(dist)dendrogram(link)Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.29667

11、60.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.50785812345100.9055160.9376330.8037421.19732920.90551600.7063970.8950050.62161930.9376330.70639700.407080.83934740.8037420.8950050.4070801.09901251.1973290.621619

12、0.8393471.0990120Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.50785812345100.

13、9055160.9376330.8037421.19732920.90551600.7063970.8950050.62161930.9376330.70639700.407080.83934740.8037420.8950050.4070801.09901251.1973290.6216190.8393471.0990120Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.470

14、9230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.5078581265100.9055160.8037421.19732920.90551600.7063970.62161960.8037420.70639700.83934751.1973290.6216190.83934706Agglomerative Hierarchical Clustering0.2077420.194764

15、0.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.5078581265100.9055160.8037421.19732920.90551600.7063970.62161960.8037420.70639700.839

16、34751.1973290.6216190.83934706Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.50

17、7858167100.9055160.80374260.90551600.70639770.9376330.706397067Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160.2580650.7112160.4241670.8443090.

18、4356990.9048810.408720.2217470.507858167100.9055160.80374260.90551600.70639770.9376330.706397067Agglomerative Hierarchical Clustering0.2077420.1947640.3111020.9797480.5948960.1174180.3012460.2259220.923380.438870.2622120.2966760.4709230.1707080.4302070.1111190.6028430.3187780.2304880.2276640.1848160

19、.2580650.7112160.4241670.8443090.4356990.9048810.408720.2217470.50785818100.80374280.8037420678Divisive: This is a top down approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.Divisive Hierarchical ClusteringAlgorithm: It has many met

20、hods, here Minimum Spanning Tree Clustering will introduced. Distance matrixGenerete MSTRemain one clusterOutput resultNYCut longest edgeDivisive Hierarchical Clustering12345100.9055160.9376330.8037421.19732920.90551600.7063970.8950050.62161930.9376330.70639700.407080.83934740.8037420.8950050.407080

21、1.09901251.1973290.6216190.8393471.0990120Distance matrix123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hiera

22、rchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.9060.7060.9380

23、.8041.1971.0990.4070.8390.6210.895Divisive Hierarchical Clustering123450.7060.8040.4070.621Divisive Hierarchical Clustering123450.7060.8040.4070.6211,2,3,4,5Divisive Hierarchical Clustering12,3,4,5123450.7060.8040.4070.621Divisive Hierarchical Clustering12,53,4123450.7060.8040.4070.621Divisive Hiera

24、rchical Clustering1253,4123450.7060.8040.4070.621Divisive Hierarchical Clustering1253,4123450.7060.8040.4070.621340.40708250.621619670.706397180.803742Hierarchical ClusteringAgglomerativeDivisive(MST)Time costO(m2logm)O(m2)Space costO(m2)AdvantageHierarchical model will returnDistanvageTime and spac

25、e consuming, methods to calculate the distance between clusters is hard to determineTime and space consumingNoteUsually used to build a treeDensity-based ClusteringIn this method, clusters are defined as areas of higher density than the remainder of the data set. Objects in these sparse areas - that

26、 are required to separate clusters - are usually considered to be noise and border points.The most popular density based clustering method is DBSCAN(Density-based spatial clustering of applications with noise).ABCEpsEps: if two points distance is smaller than eps, they are defined as neighbor.Minpts

27、: the threshold to define one core point.Core point: point has more than minpts neighbors.Border point: not core point, but its neighbor.Noise point: not core point, not border point.Density-based ClusteringAlgorithm: Core pointBorder pointNoise pointNeighbor CoreP in same clusterAssign border point to clustersOutputRaw dataNeighbor MinptsYNeighbor of CorePN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论