




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对
2、乙更有利?( )A5局3胜制B7局4胜制C都一样D说不清楚2在三棱锥中,则三棱锥外接球的表面积为( )ABCD3已知命题:,命题:,且是的必要不充分条件,则实数的取值范围是( )ABCD4复数的实部与虚部之差为( )A-1B1CD52021年起,新高考科目设置采用“”模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论:样本中的女生更倾向于选历史;样本中的男生更倾向于选物理;样本中的男生和女生数量一样多;样本中意向物理的学生数量多于意向历史的学生数量.根据两幅条形图的信息,可以判断上述结论正确的有( )A1
3、个B2个C3个D4个6甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球,先从甲罐中随机取出一个球放入乙罐,分别以,表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,下列结论中不正确的是( )A事件与事件不相互独立B、是两两互斥的事件CD7若直线:(为参数)经过坐标原点,则直线的斜率是ABC1D28在四边形中,如果,那么四边形的形状是( )A矩形B菱形C正方形D直角梯形9若函数f(x)=xex,x0 x2+3x,x0A0,2)B0,2C-3,010设函数,其中,存在使得成立,则实数的值为()ABCD11若展开式的常数项为60,则
4、值为( )ABCD12一个口袋内装有大小相同的6个白球和2个黑球,从中取3个球,则共有()种不同的取法AC61C22B二、填空题:本题共4小题,每小题5分,共20分。13已知定义在上的函数的图象关于点对称,若函数图象与函数图象的交点为,则_14已知,则_15函数的定义域为_.162019年5月15日,亚洲文明对话大会在中国北京开幕.来自亚洲全部47个国家和世界其他国家及国际组织的1352位会议代表共同出席大会.为了保护各国国家元首的安全,相关部门将5个安保小组安排到的三个不同区域内开展安保工作,其中“甲安保小组”不能单独被分派,且每个区域至少有一个安保小组,则这样的安排方法共有_种.三、解答题
5、:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求和的直角坐标方程;(2)求上的点到距离的最小值18(12分)2名男生、4名女生排成一排,问:(1)男生平必须排在男生乙的左边(不一定相邻)的不同排法共有多少种?(2)4名女生不全相邻的不同排法共有多少种?19(12分)2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某
6、高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况,收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人,已知这20位女生的数据茎叶图如图所示. (I)将这20位女生的时间数据分成8组,分组区间分别为,完成频率分布直方图;(II)以(I)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;(III)以(I)中的频率估计100位女生中累计观看时间小于20个小时的人数,已知200位男生中累计观看时间小于20小时的男生有50人.请完成下面的列联表,并判断是否有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.男生女生总
7、计累计观看时间小于20小时累计观看时间小于20小时总计300附:().20(12分)已知函数.(1)若函数在上单调递增的,求实数的取值范围;(2)当时,求函数在上的最大值和最小值.21(12分)选修4-5:不等式选讲已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的范围.22(10分)在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数)(1)将,的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为若上的点对应的参数为,点在上,点为的中点,求点到直线距离的最小值参考答案一、选择题:本题共
8、12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案.【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:,显然采用5局3胜制对乙更有利,故选A.【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.2、C【解析】分析:首先通过题中的条件,得到棱锥的三组对棱相等,从而利用补体,得到相应的长方体,列式求得长方体的对角线长,从
9、而求得外接球的半径,利用球体的表面积公式求得结果.详解:对棱相等的三棱锥可以补为长方体(各个对面的面对角线),设长方体的长、宽、高分别是,则有,三个式子相加整理可得,所以长方体的对角线长为,所以其外接球的半径,所以其外接球的表面积,故选C.点睛:该题考查的是有关几何体的外接球的体积问题,在解题的过程中,注意根据题中所给的三棱锥的特征,三组对棱相等,从而将其补体为长方体,利用长方体的外接球的直径就是该长方体的对角线,利用相应的公式求得结果.3、A【解析】首先对两个命题进行化简,解出其解集,由是的必要不充分条件,可以得到关于的不等式,解不等式即可求出的取值范围【详解】由命题:解得或,则,命题:,由
10、是的必要不充分条件,所以故选【点睛】结合“非”引导的命题考查了必要不充分条件,由小范围推出大范围,列出不等式即可得到结果,较为基础。4、B【解析】试题分析:,故选B.考点:复数的运算.5、B【解析】分析条形图,第一幅图从性别方面看选物理历史的人数的多少,第二幅图从选物理历史的人数上观察男女人数的多少,【详解】由图2知样本中的男生数量多于女生数量,由图1有物理意愿的学生数量多于有历史意愿的学生数量,样本中的男生更倾向物理,女生也更倾向物理,所以正确,故选:B.【点睛】本题考查条形图的认识,只要分清楚条形图中不同的颜色代表的意义即可判别6、D【解析】分析:由题意,是两两互斥事件,条件概率公式求出,
11、对照选项即可求出答案.详解:由题意,是两两互斥事件,,而.所以D不正确.故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.7、D【解析】先由参数方程消去参数,再由直线过原点,即可得出结果.【详解】直线方程消去参数,得:,经过原点,代入直线方程,解得:,所以,直线方程为:,斜率为2.故选D【点睛】本题主要考查直线的参数方程,熟记参数方程与普通方程的互化即可,属于基础题型.8、A【解析】由可判断出四边形为平行四边形,由可得出,由此判断出四边形的形状.【详解】,所以,四边形为平行四
12、边形,由可得出,因此,平行四边形为矩形,故选A.【点睛】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.9、A【解析】先作y=f(x)的图象与直线y=-x+2的图象在同一直角坐标系中的位置图象,再结合函数与方程的综合应用即可得解【详解】设h(x)=xe则h(x)=1-x则h(x)在(0,1)为增函数,在(1,+)为减函数,则y=f(x)的图象与直线y=-x+2的图象在同一直角坐标系中的位置如图所示,由图可知,当g(x)有三个零点,则a的取值范围为:0a2,故选:A【点睛】本题考查了作图能力及函数与方程的综合应用,属于
13、中档题10、A【解析】试题分析:函数f(x)可以看作是动点M(x,lnx2)与动点N(A,2A)之间距离的平方,动点M在函数y=2lnx的图象上,N在直线y=2x的图象上,问题转化为求直线上的动点到曲线的最小距离,由y=2lnx得,y=2,解得x=1,曲线上点M(1,0)到直线y=2x的距离最小,最小距离D=,则f(x),根据题意,要使f(),则f()=,此时N恰好为垂足,由,解得考点:导数在最大值、最小值问题中的应用11、D【解析】由二项式展开式的通项公式写出第项,求出常数项的系数,列方程即可求解.【详解】因为展开式的通项为,令,则,所以常数项为,即,所以.故选D【点睛】本题主要考查二项式定
14、理的应用,熟记二项展开式的通项即可求解,属于基础题型.12、D【解析】直接由组合数定义得解【详解】由题可得:一个口袋内装有大小相同的8个球中,从中取3个球,共有N=C故选D【点睛】本题主要考查了组合数的定义,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、4038.【解析】由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解【详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【点睛】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题14、【解析】分析
15、:由题意,利用目标角和已知角之间的关系,现利用诱导公式,在结合二倍角公式,即可求解详解:由题意,又由,所以点睛:本题主要考查了三角函数的化简求值问题,其中解答中正确构造已知角与求解角之间的关系,合理选择三角恒等变换的公式是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力15、【解析】分析:令即可求出定义域详解:令,解得综上所述,函数的定义域为点睛:在求定义域时找出题目中的限制条件,有分母的令分母不等于零,有根号的令根号里面大于或者等于零,对数有自身的限制条件,然后列出不等式求出定义域。16、108【解析】根据题意,分两步,将5个安保小组分成组,然后全排列分派到每个区域,即可得
16、到结果.【详解】根据题意,分两步进行:(1)将5个安保小组分成组,有种情况; (2)将分成的组全排列分派到每一个区域内,有种情况,根据分步计数原理,这样的安排方法共计有种情况.故答案为:108【点睛】本题考查了排列、组合以及分步计数原理,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线的直角坐标方程为:,曲线的直角坐标方程为:(2)【解析】(1)在曲线的参数方程中消去参数可得出曲线的直角坐标方程,将代入直线的极坐标方程可得出直线的直角坐标方程;(2)设曲线上的点的坐标为,利用点到直线的距离公式以及二次函数的基本性质可求出曲线上的点到直线距离的最小值。【
17、详解】(1)由,得, 曲线的直角坐标方程为:. 由,代入 曲线的直角坐标方程为:;(2)设曲线上的点为,由点到直线的距离得 ,故当且仅当时,上的点到距离的最小值.【点睛】本题考查参数方程、极坐标方程与普通方程之间的互化,考查参数方程的应用,解题时要熟悉参数方程与极坐标方程所适应的基本类型,考查计算能力,属于中等题。18、(1);(2).【解析】分析:(1)根据定序法确定排列数,(2)先求相邻的排列数(捆绑法),再用全排列相减得结果.详解:(1)法1:,法2:; (2)答:分别有360和576种不同的排法. 点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题“捆邦法”;(2)元素相
18、间的排列问题“插空法”;(3)元素有顺序限制的排列问题“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题间接法.19、 (1)见解析.(2).(3)列联表见解析;有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.【解析】分析:(1)根据提干茎叶图数据计算得到相应的频率,从而得到频率分布直方图;(2). 因为(1)中的频率为,以频率估计概率;(3)补充列联表,计算得到卡方值即可做出判断.详解:(1)由题意知样本容量为20,频率分布直方图为:(2)因为(1)中的频率为,所以1名女生观看冬奥会时间不少于30小时的概率为.(3)因为(1)中的频率为,故可估计100位女生中累
19、计观看时间小于20小时的人数是.所以累计观看时间与性别列联表如下:男生女生总计累计观看时间小于20小时504090累计观看时间小于20小时15060210总计200100300结合列联表可算得所以,有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.点睛:这个题目考查了频率分布直方图的画法,频率和概率的关系,和卡方的计算和应用;条形分布直方图常见的应用有:计算中位数,众数,均值等.20、 (1) (2) 【解析】试题分析:(1)若函数f(x)在(,+)上是增函数,f(x)1在(,+)上恒成立利用二次函数的单调性即可得出;(2)利用导数研究函数的单调性极值与最值即可得出试题解析:(1)若函数在上是增函数,则在上恒成立,而,即在上恒成立,即.(2)当时,.令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025一年级上学期班主任家长沟通计划
- 共享厨房创业计划书怎么写
- 利用技术支持在线学习小组管理计划
- 中国管道检查机器人行业市场前景预测及投资价值评估分析报告
- 四年级英语复习计划:趣味学习与实践
- 外研版三年级下册英语课外辅导计划
- 心理健康教育骨干教师培训计划
- 中国医用压敏胶项目投资计划书
- 基于深度学习的生物特征识别算法优化-洞察阐释
- 义务教育阶段课程设置优化措施
- 师带徒培养方案范文
- 山东莱阳核电项目一期工程水土保持方案
- 临床医学概论课程的妇产科学与生殖医学
- 2024年中国铁路物资西安有限公司招聘笔试参考题库含答案解析
- PDCA降低护士针刺伤发生率
- 幼儿园大班美术《脸部彩绘》
- 2021年安全生产月:安全执行力培养专题培训课件
- 陕西碑刻总目提要编纂凡例
- GB/T 3785.1-2023电声学声级计第1部分:规范
- gds系统应急预案
- 国家开放大学《农村政策法规》形成性考核1(平时作业)参考答案
评论
0/150
提交评论