




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,是抛物线上两点,抛物线的准线与轴交于点,已知弦的中点的横坐标为3,记直线和的斜率分别为和,则的最小值为( )AB2CD12甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2
2、人,同一级台阶上的人不区分站的位置,则不同的站法总数是A210 B336 C84 D3433已知随机变量的分布列为( )01 若,则的值为( )ABCD4已知,是两个向量,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5求二项式展开式中第三项的系数是( )A-672B-280C84D426用反证法证明命题“设为实数,则方程至多有一个实根”时,要做的假设是A方程没有实根B方程至多有一个实根C方程至多有两个实根D方程恰好有两个实根7已知直线与圆相交所得的弦长为,则圆的半径( )AB2CD48从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女
3、生入选的组队方案数为( )A90B60C120D1109的展开式中的系数是A20B5C5D2010已知函数f(x)则)等于()A4B2C2D111 “”是“方程所表示的曲线是椭圆”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12第十九届西北医疗器械展览将于2018年5月18至20日在兰州举行,现将5名志愿者分配到3个不同的展馆参加接待工作,每个展馆至少分配一名志愿者的分配方案种数为 ( )A540B300C180D150二、填空题:本题共4小题,每小题5分,共20分。13已知函数f(x)=12x-14sinx-3414已知i是虚数单位,若,则_15乒乓球赛规定:一局比赛,
4、双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为_.16已知是等腰直角三角形,斜边,是平面外的一点,且满足,则三棱锥外接球的表面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,:,: (I)若是的充分条件,求实数的取值范围;()若,“或”为真命题,“且”为假命题,求实数的取值范围18(12分)(1)在复数范围内解方程;(2)
5、已知复数z满足,且,求z的值.19(12分)在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆每次射击相互独立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列20(12分)(1)求过点P(3,4)且在两个坐标轴上截距相等的直线l1(2)求过点A(3,2),且与直线2x-y+1=0垂直的直线l221(12分)求曲线,所围成图形的面积22(10分)已知函数,kR(I)求函数f(x)的单调区间;(II)当k0时,若函数f(x)在区间(1,2)内单调递减,求k的
6、取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,运用点差法和直线的斜率公式和中点坐标公式,可得,再由基本不等式可得所求最小值【详解】设,可得,相减可得,可得,又由,所以,则,当且仅当时取等号,即的最小值为.故选:D【点睛】本题主要考查了抛物线的方程和性质,考查直线的斜率公式和点差法的运用,以及中点坐标公式,考查方程思想和运算能力,属于基础题2、B【解析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果【详解】由题意知本题需要分组解
7、决,对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,根据分类计数原理知共有不同的站法种数是A73+C31A72=336种故答案为:B【点睛】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数分步要做到步骤完整完成了所有步骤,恰好完成任务3、A【解析】先由题计算出期望,进而由计算得答案。【详解】由题可知随机变量的期望,所以方差,解得,故选A【点睛】本题考查随机变量的期望与方差,属于一般题。4、B【解析】分析:先化简已知条件,再利用充分条件必要条件的定义判断.详解:由题得,所以,所以或或,所以或或.因为或或是的必要非充分
8、条件,所以“”是“”的必要非充分条件.故答案是:B.点睛:(1)本题主要考查充分条件和必要条件,考查向量的数量积,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 判定充要条件常用的方法有定义法、集合法、转化法,本题利用的是集合法.5、C【解析】直接利用二项式定理计算得到答案.【详解】二项式展开式的通项为:,取,则第三项的系数为.故选:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.6、D【解析】反证法证明命题时,首先需要反设,即是假设原命题的否定成立.【详解】命题“设为实数,则方程至多有一个实根”的否定为“设为实数,则方程恰好有两个实根”;因此,用反证法证明原命题时,
9、只需假设方程恰好有两个实根.故选D【点睛】本题主要考查反证法,熟记反设的思想,找原命题的否定即可,属于基础题型.7、B【解析】圆心到直线的距离,根据点到直线的距离公式计算得到答案.【详解】根据题意:圆心到直线的距离,故,解得.故选:.【点睛】本题考查了根据弦长求参数,意在考查学生的计算能力和转化能力.8、D【解析】用所有的选法共有减去没有任何一名女生入选的组队方案数,即得结果【详解】所有的选法共有种其中没有任何一名女生入选的组队方案数为:故至少有一名女生入选的组队方案数为故选【点睛】本题主要考的是排列,组合及简单计数问题,考查组合的运用,处理“至少有一名”类问题,宜选用间接法,是一道基础题。9
10、、A【解析】利用二项式展开式的通项公式,求解所求项的系数即可【详解】由二项式定理可知:;要求的展开式中的系数,所以令,则;所以的展开式中的系数是是-20;故答案选A【点睛】本题考查二项式定理的通项公式的应用,属于基础题。10、B【解析】,则,故选B.11、B【解析】分析:根据椭圆的方程以及充分条件和必要条件的定义进行判断即可详解:若方程表示的曲线为椭圆,则,且,反之,“”不能得到方程所表示的曲线是椭圆”,如 故“”是“方程所表示的曲线是椭圆”的必要不充分条件.选B.点睛:本题主要考查充分条件和必要条件的判断,属基础题.12、D【解析】分析:将人分成满足题意的组有与两种,分别计算分为两类情况的分
11、组的种数,再分配到三个不同的展馆,即可得到结果详解:将人分成满足题意的组有与两种,分成时,有种分法;分成时,有种分法,由分类计数原理得,共有种不同的分法,故选D点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率在某些特定问题上,也可充分考虑“正难则反”的思维方式二、填空题:本题共4小题,每小题5分,共20分。13、-【
12、解析】解:函数f(x)=12因此f(x0)=12-14、【解析】由 即答案为15、【解析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分所以概率为【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.16、【解析】在平面的投影为的外心,即中点,设球半径为,则,解得答案.【详解】,故在平面的投影为的外心,即中点,故球心
13、在直线上,设球半径为,则,解得,故.故答案为:.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)()【解析】试题分析:(1),是的充分条件,是的子集,所以;(2)由题意可知一真一假,当时,分别求出真假、假真时的取值范围,最后去并集就可以试题解析:(1),是的充分条件,是的子集,的取值范围是(2)由题意可知一真一假,当时,真假时,由;假真时,由或所以实数的取值范围是考点:含有逻辑联结词命题真假性18、(1)或或;(2)4或.【解析】(1)设代入方程利用复数相等的定义求解。(2)设代入和求解。【详
14、解】(1)设,则,解得:或或,或或。(2)设,则,或。又,由解得(舍去)或,由,解得,综上,4或。【点睛】本题考查复数的运算,解题时可设代入已知条件,利用复数相等的定义转化为实数问题求解。19、(1);(2)见解析.【解析】试题分析:(1)由题意便知需命中2次引爆油罐,且第二次命中时停止射击,这样可设Ai=“射击i+1次引爆油罐”,i=1,2,3,4,根据符合二项分布的变量的概率的求法及独立事件同时发生的概率的求法即可求出油罐被引爆的概率;(2)根据题意知变量的取值为2,3,4,5,并且取5时包含这样几种情况:5次都未打中,5次只有1次打中,打中2次且第5次打中,这三个事件相互独立,求出每个事
15、件的概率再求和即可,列表表示的分布列,根据期望的计算公示求的数学期望即可试题解析:(1)“油罐被引爆”的事件为事件,其对立事件为包括“一次都没有命中”和“只命中一次”,即,(2)射击次数的可能取值为2,3,4,5 故的分布列为:20、(1)4x-3y=0或x+y-7=0(2)x+2y-7=0【解析】(1)需分直线过原点,和不过原点两种情况,过原点设直线l1:y=kx,不过原点时,设直线l2:xa+y【详解】解:(1)当直线过原点时,直线方程为:4x-3y=0;当直线不过原点时,设直线方程为x+y=a,把点P3,4代入直线方程,解得a=7所以直线方程为x+y-7=0(2)设与直线l:2x-y+1
16、=0垂直的直线l1的方程为:x+2y+m=0,把点A3,2代入可得,3+22=m,解得m=-7过点A3,2,且与直线l垂直的直线l【点睛】本题考查了直线方程的求法,属于简单题型.21、平面图形的面积【解析】分析:先确定交点坐标,可得积分区间,再利用定积分求面积即可;详解:由曲线,可得的横坐标为1,由,可得的横坐标为1所求面积为 点睛:本题考查利用定积分求面积,解题的关键是确定积分区间与被积函数,属于中档题22、()见解析;()【解析】分析:()先求出函数的定义域,求导数后根据的取值通过分类讨论求单调区间即可()将问题转化为在(1,2)上恒成立可得所求详解:(I)函数的定义域为由题意得,(1)当时,令,解得;令,解得(2)当时,当,即时,令,解得或;令,解得当时,恒成立,函数在上为单调递增函数;当,即时,令,解得或;令,解得综上所述,当时,函数的单调递增区间为(0,1),单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工资提前结算协议书
- 社园共建协议书
- 皇马降薪协议书
- 渣土倾倒协议书
- 工地扣件赔偿协议书
- 汽车意向协议书
- 工程预算服务协议书
- 禁止赌博协议书
- 渠道市场协议书
- 家具家电买卖协议书
- 北京北大方正软件职业技术学院《实践中的马克思主义新闻观》2023-2024学年第二学期期末试卷
- 煤炭产品质量保障措施
- 2025福建中考:数学必背知识点
- 2025年下半年甘肃张掖市山丹县事业单位招聘112人(第二批)易考易错模拟试题(共500题)试卷后附参考答案
- 合作种植协议书合同
- 自愿离婚协议书电子版
- 2025-2030中国酿酒行业市场发展现状及商业模式与投资发展研究报告
- 2025年陕西咸阳亨通电力(集团)有限公司招聘笔试参考题库附带答案详解
- 【水利水电】李想 案例专项班教案 04-案例专项班(四)
- 光影中国学习通超星期末考试答案章节答案2024年
- DLT 572-2021 电力变压器运行规程
评论
0/150
提交评论