




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1b是区间上的随机数,直线与圆有公共点的概率为ABCD2中国南北朝时期的著作孙子算经中,对同余除法有较深的研究设为整数,若和被除得的余数相同,则称和对模同余,记为若,则的值可以是A20
2、15B2016C2017D20183五一放假,甲、乙、丙去厦门旅游的概率分别是、,假定三人的行动相互之间没有影响,那么这段时间内至少有人去厦门旅游的概率为( )ABCD4已知函数,则的解集为()ABCD5设随机变量,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值是( )(注:若,则,)A7539B7028C6587D60386已知,则 ( )附:若,则,A0.3174B0.1587C0.0456D0.02287已知角的终边经过点,则的值等于( )ABCD84名老师、2位家长以及1个学生站在一排合影,要求2位家长不能站在一起,学生必须和4名老师
3、中的王老师站在一起,则共有()种不同的站法A1920B960C1440D7209 “若,则,都有成立”的逆否命题是( )A有成立,则B有成立,则C有成立,则D有成立,则10已知,且关于的方程有实根,则与的夹角的取值范围是( )ABCD11若函数则( )A-1B0C1D212设复数,在复平面内的对应点关于虚轴对称,则( )A- 5B5C- 4+ iD- 4 - i二、填空题:本题共4小题,每小题5分,共20分。13已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是_ 14已知函数,若,则的值是_.15在数列1,2,3,4,5,6中,任取k个元素位置保持不动,将其余个元素变动位置,得
4、到不同的新数列,记不同新数列的个数为,则的值为_.16已知,且,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在中,D是AE的中点,C是线段BE上的一点,且,将沿AB折起使得二面角是直二面角(l)求证:CD平面PAB;(2)求直线PE与平面PCD所成角的正切值18(12分)已知函数.(1)若函数在上为增函数,求的取值范围;(2)若函数有两个不同的极值点,记作,且,证明:(为自然对数).19(12分)在二项式的展开式中,二项式系数之和为256,求展开式中所有有理项.20(12分)已知,其前项和为.(1)计算;(2)猜想的表达式,并用数学归纳法进行证明.21
5、(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最大值,若实数满足,求的最小值.22(10分)双曲线的虚轴长为,两条渐近线方程为.(1)求双曲线的方程; (2)双曲线上有两个点,直线和的斜率之积为,判别是否为定值,;(3)经过点的直线且与双曲线有两个交点,直线的倾斜角是,是否存在直线(其中)使得恒成立?(其中分别是点到的距离)若存在,求出的值,若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用圆心到直线的距离小于等半径可求出满足条件的b,最后根据几何概型的概率公式可求出所求
6、【详解】解:b是区间上的随机数即,区间长度为,由直线与圆有公共点可得,区间长度为,直线与圆有公共点的概率,故选:C【点睛】本题主要考查了直线与圆的位置关系,与长度有关的几何概型的求解2、C【解析】分析:首先求得a的表达式,然后列表猜想的后三位数字,最后结合除法的性质整理计算即可求得最终结果.详解:由题意可得:,结合二项式定理可得:,计算的数值如下表所示:底数指数幂值5155225531255462555312556156255778125583906255919531255109765625据此可猜想最后三位数字为,则:除以8的余数为1,所给选项中,只有2017除以8的余数为1,则的值可以是2
7、017.本题选择C选项.点睛:本题主要考查二项式定理的逆用,学生归纳推理的能力等知识,意在考查学生的转化能力和计算求解能力.3、B【解析】计算出事件“至少有人去厦门旅游”的对立事件“三人都不去厦门旅游”的概率,然后利用对立事件的概率可计算出事件“至少有人去厦门旅游”的概率.【详解】记事件至少有人去厦门旅游,其对立事件为三人都不去厦门旅游,由独立事件的概率公式可得,由对立事件的概率公式可得,故选B.【点睛】本题考查独立事件的概率公式的应用,同时也考查了对立事件概率的应用,在求解事件的概率问题时,若事件中涉及“至少”时,采用对立事件去求解,可简化分类讨论,考查分析问题的能力和计算能力,属于中等题.
8、4、C【解析】根据分段函数的表达式,讨论当和时,不等式的解,从而得到答案。【详解】因为,由,得: 或;解得;;解得: ;所以的解集为;故答案选C【点睛】本题考查指数不等式与对数不等式的解法,体现了分类讨论的数学思想,属于中档题。5、C【解析】由题意正方形的面积为,再根据正态分布曲线的性质,求得阴影部分的面积,利用面积比的几何概型求得落在阴影部分的概率,即可求解,得到答案【详解】由题意知,正方形的边长为1,所以正方形的面积为 又由随机变量服从正态分布,所以正态分布密度曲线关于对称,且,又由,即,所以阴影部分的面积为,由面积比的几何概型可得概率为,所以落入阴影部分的点的个数的估计值是,故选C【点睛
9、】本题主要考查了正态分布密度曲线的性质,以及面积比的几何概型的应用,其中解答中熟记正态分布密度曲线的性质,准确求得落在阴影部分的概率是解答的关键,着重考查了运算与求解能力,属于基础题6、D【解析】由随机变量,所以正态分布曲线关于对称,再利用原则,结合图象得到.【详解】因为,所以,所以,即,所以.选D【点睛】本题主要考查正态分布曲线及原则,考查正态分布曲线图象的对称性.7、A【解析】由三角函数的定义可求出的值.【详解】由三角函数的定义可得,故选A.【点睛】本题考查三角函数的定义,解题的关键在于三角函数的定义进行计算,考查计算能力,属于基础题.8、B【解析】先将学生和王老师捆绑成一个团队,再将团队
10、与另外3个老师进行排列,最后将两位家长插入排好的队中即可得出【详解】完成此事分三步进行:(1)学生和王老师捆绑成一个团队,有种站法;(2)将团队与另外3个老师进行排列,有种站法;(3)将两位家长插入排好的队中,有种站法,根据分步计数原理,所以有种不同的站法,故选B【点睛】本题主要考查分步乘法计数原理、捆绑法以及插空法的应用9、D【解析】根据逆否命题定义以及全称命题否定求结果.【详解】“若,则,都有成立”的逆否命题是:有成立,则,选D.【点睛】对全称(存在性)命题进行否定的两步操作:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;对原命题的结论进行否定.10、B【解析】根据方
11、程有实根得到,利用向量模长关系可求得,根据向量夹角所处的范围可求得结果.【详解】关于的方程有实根 设与的夹角为,则又 又 本题正确选项:【点睛】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.11、B【解析】利用函数的解析式,求解函数值即可【详解】函数,故选B.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力,属于基础题.12、A【解析】试题分析:由题意,得,则,故选A考点:1、复数的运算;2、复数的几何意义二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数,则,即函数是单调递增函数。因,故,即,所以
12、命题正确;因,故,即,则命题不正确;又因为,则,即,则命题不正确;又因为,则,即,则命题不正确。应填答案。点睛:解答本题的关键和难点是构造函数,这是解答本题的突破口和瓶颈。只要能构造出函数的解析式为,然后运用导数知识对函数进行求导,借助导数与函数单调性之间的关系就分别验证四个答案即可巧妙获解。14、【解析】当时,求出;当时,无解.从而,由此能求出结果.【详解】解:由时,是减函数可知,当,则,所以,由得,解得,则.故答案为:.【点睛】本题考查函数值的求法,属于基础题.15、720【解析】根据题意,只需分别计算出即可.【详解】故答案为:720【点睛】本题考查排列与组合的应用以及组合数的计算,考查学
13、生的逻辑思想,是一道中档题.16、0.4【解析】分析:先根据正态分布曲线得,再求,最后求.详解:根据正态分布曲线得,所以,所以0.5-0.1=0.4.故答案为:0.4.点睛:本题主要考查正态分布图,意在考查学生对该基础知识的掌握水平和数形结合的思想方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2).【解析】分析:(1)推导出是的斜边上的中线,从而是的中点,由此能证明平面;(2)三棱锥的体积为,由此能求出结果详解:(1)因为,所以,又,所以,又因为,所以是的斜边上的中线,所以是的中点,又因为是的中点所以是的中位线,所以,又因为平面,平面,所以平面
14、(2)据题设分析知,两两互相垂直,以为原点,分别为,轴建立如图所示的空间直角坐标系:因为,且,分别是,的中点,所以,所以,所以,设平面的一个法向量为,则,即,所以,令,则,设直线与平面所成角的大小为,则故直线与平面所成角的正切值为点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.18、(1)(2)见解析【解析】分析:(1)由题意可知,函数的定
15、义域为,因为函数在为增函数,所以在上恒成立,等价于,由此可求的取值范围;(2)求出,因为有两极值点,所以, 设令,则,上式等价于要证,令,根据函数的单调性证出即可详解:(1)由题意可知,函数的定义域为, 因为函数在为增函数,所以在上恒成立,等价于在上恒成立,即,因为,所以,故的取值范围为. (2)可知,所以, 因为有两极值点,所以, 欲证,等价于要证:,即,所以,因为,所以原式等价于要证明:,由,可得,则有,由原式等价于要证明:,即证,令,则,上式等价于要证, 令,则因为,所以,所以在上单调递增,因此当时,即.所以原不等式成立,即. 点睛:本题考查了函数的单调性,考查导数的应用以及不等式的证明
16、,属难题19、答案见解析【解析】由题意首先求得n的值,然后结合展开式的通项公式即可确定展开式中所有有理项.【详解】由题意可得:,解得:,则展开式的通项公式为:,由于且,故当时展开式为有理项,分别为:,.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且nr,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解20、(1);(2),证明见解析.【解析】(
17、1)由题可得前4项,依次求和即可得到答案;(2)由(1)得到前四项和的规律可猜想,由数学归纳法,即可做出证明,得到结论。【详解】(1)计算,.(2)猜想.证明:当时,左边,右边,猜想成立.假设猜想成立,即成立,那么当时,而,故当时,猜想也成立.由可知,对于,猜想都成立.【点睛】本题主要考查了归纳、猜想与数学归纳法的证明方法,其中解答中明确数学归纳证明方法:(1)验证时成立;(2)假设当时成立,证得也成立;(3)得到证明的结论其中在到的推理中必须使用归纳假设着重考查了推理与论证能力21、(1)(2)【解析】(1)由定义域为,只需求解的最小值,即可得实数的取值范围;(2)根据(1)求得实数的值,利用基本不等式即可求解最小值【详解】(1)函数的定义域为.对任意的恒成立,令,则,结合的图像易知的最小值为,所以实数的取值范围.(2)由(1)得,则,所以,当且仅当,即,时等号成立,的最小值为.【点睛】本题主要考查了含绝对值函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司团队户外拓展活动合作协议
- 水利行业智能化水利工程运行与管理安全性方案
- 系统学习的2025年工程经济试题及答案
- 游戏赛事组织与执行方案
- 2025年公共关系学常见名词定义及试题及答案
- 物理光学及声学考点习题
- 经济学的实践案例试题及答案
- 高校成本核算体系构建与应用
- 行政管理结构调整试题及答案
- 住院医师考试试题及答案
- 鸡的解剖步骤及病
- 喷涂件检验通用规范
- 石方爆破及安全施工工艺流程图
- 市场部经理年终总结PPT模板
- 医院版LIS操作手册(共84页)
- 基于蓄热式加热炉PLC控制系统设计(共43页)
- 瓦楞纸箱检验标准
- 安全生产事故应急救援预案范本
- 优秀毕业设计精品]语音放大电路的设计
- MT103的栏位说明
- 实测实量施工方案(完整版)
评论
0/150
提交评论