汽车运输企业全面质量管理基础知识教材_第1页
汽车运输企业全面质量管理基础知识教材_第2页
汽车运输企业全面质量管理基础知识教材_第3页
汽车运输企业全面质量管理基础知识教材_第4页
汽车运输企业全面质量管理基础知识教材_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、汽车运输企业全面质量治理基础知识教材 HYPERLINK /yqwh/jiaocai/jc/qy.htm 前言 HYPERLINK /yqwh/jiaocai/jc/1.htm t _self 第一章 HYPERLINK /yqwh/jiaocai/jc/2.htm t _self 第二章 HYPERLINK /yqwh/jiaocai/jc/3.htm 第三章 HYPERLINK /yqwh/jiaocai/jc/4.htm t _self 第四章 HYPERLINK /yqwh/jiaocai/jc/5.htm t _self 第五章 HYPERLINK /yqwh/jiaocai/jc/

2、6.htm 第六章 HYPERLINK /yqwh/jiaocai/jc/7.htm 第七章 HYPERLINK /yqwh/jiaocai/jc/8.htm 第八章第五章 汽车运输全面质量治理常用的数理统计方法第一节 数理统计概述“一切用数据讲话”,是全面质量治理的差不多指导思想,然而并非一切数据都能够用来“讲话”,并非不经加工的数据就能够拿来“讲话”的。那么如何才能正确地用数据讲话呢?这就要学会使用数理统计方法。数理统计方法的理论基础是数理统计学,它是以概率论为基础的一门数学分支,将它运用于质量治理,要紧是解决运用数据的方法问题,即正确地把收集数据,科学地分析数据,使收集的质量数据能反映质

3、量活动的客观规律,从而为操纵质量活动全过程组织和协调质量工作提供可靠的数据,有效地指导质量治理工作的开展。一、数理统计在质量治理中的要紧作用数理统计应用于质量治理要紧解决以下几个问题:(一)提供可靠的质量数据。如平均值、极差、标准偏差等。(二)用数据或图表描述质量特征。如运输质量的安全性、及时性、方便性、车辆的技术性能等。(三)比较两件事物中的差异。如推断不同的经营方法之间运输质量存在着哪些差异等。(四)分析阻碍质量的各种因素,并给予定量。如运用排列图分析阻碍班车正点的各种因素,并分出主次。(五)分析两件事物或一件事物的两种质量特性之间的关系。如运用相关图分析运量与班次的关系。(六)研究取样与

4、试验方法,确定合理的试验或设计方案。二、数理统计方法运用于质量治理的工作程序。全面质量治理运用数理统计方法大致按照如下工作程序进行:(一)针对所要解决的质量问题用科学方法收集数据。(二)将收集的数据整理归纳,形成能讲明问题的图、表或计算出特征值,如平均值、百分比、标准差等。(三)对这些通过整理的数据、图、表进行观看、分析、找出其中的统计规律。(四)依照统计规律的启发,找出阻碍质量的要紧问题。(五)针对找出的问题采取措施,达到提高质量的目的。质量治理活动中运用数理统计方法的工作程序如图51所示统计规律数、表、图形特 征 值收集数据整 理归 纳观 察统计规律数、表、图形特 征 值收集数据整 理归

5、纳观 察分 析组织、协调专业技术提高质量要紧问题组织、协调专业技术提高质量要紧问题图51数理统计运用工作程序三、数据数据即测量质量特性所得的数值。数据是数理统计研究的对象,也是质量治理活动的要紧依据。因此在质量治理中运用数理统计方法时首先要对数据的特性有一个明确的认识。(一)数据可分为计量值数据和计数值数据两大类。1、计量值数据。能够连续取值的数据叫计量值数据,所谓能连续取值是使用计量工具能够测出小数点,如1.1、1.2、1.12、1.112.等。长度、容量、时刻、温度、使用寿命、强度、化学成分等差不多上能够连续取值的,差不多上计量值。2、计数值数据。不能连续取值的数据叫做计数值数据。这类数据

6、用计量工具测量只能得出整数,不能得到分数或小数。如车辆数、机器数、正点班次、正点率、正班率、事故死亡人数等。由于百分比是源于计数值或是计量值,要具体分析,一般来讲分子是计数值的,那个百分率确实是计数值数据,如正点率,它的分子是正点班次,班次不能去小数,源于计数值,因此,正点率是计数值的数据。尽管正点率有时分子会出现小数,如98.5%,但那个分子不是表示正点班次,而是约分以后的结果,表示正点班次在总班次中所占的比重,因此仍然应该看成是计数值。(二)数理统计常用的几个特征值1、算术平均值算术平均值是表示平均水平的数,比如某车队共有10辆车,某日行驶里程如下表:车 号12345678910行驶里程(

7、公 里)247235245281213212260213219240欲求这一天的平均车日行程则将各车辆的车日行程相加除以车辆数236510=平均车日行程= 247+235+245+281+213+212+260+213+219+240236510=平均车日行程= 10=236.5(公里)10=236.5(公里)以上计算方法是简单算术平均数的计算方法,还有一种加权算术平均数的计算方法,要紧是用于分组资料的计算。例如,某汽车公司当日班车的行驶里程分组如下:行驶里程(公里)班车数22023040230240452402505025026035从那个表中看不出每个班车的行驶里程,无法用简单平均数的计算

8、方法将所有班车的行车里程相加。然而依照那个分组资料也能够算出车日行程的平均数,计算时先算出各组的组中值,然后用组中值乘以各组的班次数,再将得到的乘数除以班次总数,计算公式如下: = 其中:x为样本平均数(读x坝),为计算,为总和符号(读西各马),f为各组频率,x为样本各组的组中值,n为样本中的子样总数。将例中数值代入:= =239.7公里=(fx) 225402354524550255= =239.7公里=n40455035 当日该公司各班车平均车日行程为239.7公里,这种利用组中值算出的加权平均数是近似值,然而计算专门方便,不需要将170个班车的里程全部调查出来再计算总和,对汽车运输企业来

9、讲精确度差不多符合要求,不一定要绝对精确。这种计算方法中,各组的频率(例中为各组的班车数)起着权衡轻重的作用,因此被称为“权数”,这种计算方法称为加权算术平均法。2、几何平均数汽车运输企业经常要计算几年内平均增长速度。如运量、周转量、营收、成本等,运用算术平均数计算不出来,必须采纳几何平均数,例如某新辟线路5年内客运周转量增长率分不为100%,200%,250%,300%和400%,加上基数100%相应的增长系数则为2,3,3.5,4和5,假如开始周转量为100人公里,5年内会增长到100233.545=42000人公里。假如用算术平均数计算增长系数是:(2+3+3.5+4+5)5=3.5平均

10、年增长率则为250%,以这种递增率来验算即为1003.53.53.53.53.5=52522(公里)。前面算出的期末周转量为42000人公里,相差10522人公里,这是一个相当大的误差,讲明用算术平均法不行,必须用几何平均数。利用几何平均数计算平均增长系数,即把5年的增长系数相乘,然后对那个乘积开5次方,计算几何平均数的公式是:Mg= n X1X2X3Xn将例中数值代入Mg= 5 2 33.545=5 420 =3.347减去基数100%,正确的平均率增长率为234.7%。3、中位数中位数是从一组数据中取出的一个数据点的值,它表示位于数据中心位置的那一项的大小。这一项位于数据数列的正中心,有一

11、半观看值在它上面,一半观看值在它下面,讲得简单一些确实是处于中间位置的一个数。计算中位数时,首先要把这些数据按由大到小或由小到大的顺序排列,如这组数据的个数是奇数,那么数列正中心的一项确实是中位数,假如这组数据的个数是偶数,那么中位数是数据数列中心两项的平均值。中位数与平均数相比,有些优点,最重要的优点是它不受数据中专门值的阻碍,例如某车队有10辆车,其中9辆平均节油100公升,有一辆费油200公升,平均数即降为70公升。如取中位数仍然是100公升,后者更能反映普遍水平。另外,当所取样本不是具体数据而是等级时,也能够取中位数代表普遍水平。如某公司有11个车站。文明站评比中列出了先后顺序,按顺序

12、的第六个站能够代表普遍水平。而平均数却无法得到。然而中位数与平均数相比,计算比较苦恼,首先要把资料顺序排列,关于观看值个数多的不方便使用。4、众数众数是所取样本中出现次数最多的那个数值。例如某队10辆车的节油水平分不为:150、120、125、150、130、150、160、170、165、155,其中150出现了三次,次数最多,因此它确实是众数。采纳众数,与质量分布特点和各种平均数的特点有关,比如在选择车型时就要依照旅客、货主的意见选择众数,而不能用平均数和中位数。在诊断质量治理成果时也往往需要用到众数。在民主评议干部时则是依照众数作结论的。众数的特点是不受极端数值的阻碍,当数据数列中出现开

13、口组时也不受阻碍,然而当资料中包括同样次数的众数时,不方便采纳。还有些资料中没有众数,因此在质量治理活动中众数不象平均数,中位数那样经常地应用。四、总体和样本总体是指包括调查时对象所有单位的一般总体,也称母体。例如一个汽车运输企业的全部车辆,全部职工,全部岗位,全部工作等,它是质量治理活动最终要讲明的认识对象,从总体中随机抽选出来的单位所组成的小总体叫做样本,也叫子样或抽样总体,样本中的各单位叫样本单位,样本单位数用n表示。从样本中抽选一部分单位进行调查,能够有两种方法:一种是依照自己对总体情况的了解和推断有意识的选择若干个有代表性的单位进行调查,另一种是随机抽选,即在抽选具体单位时,不掺杂主

14、观推断,而是使总体中的每个单位都有同等的机会被抽到。我们通常只把按随机原则抽取样本的调查叫做抽样调查。这是质量治理中经常要用到的一种方法,它的作用是:(一)关于无限总体,不可能进行全面调查,可采纳抽样调查反映总体特性。(二)破坏性的试验也不可能进行全面调查,例如发动机使用寿命,各部件耐磨程度,耐高温性能等,只有用抽样调查的方法检验。(三)有些总体从理论上讲能够全面调查,但实际上办不到。例如,班车行驶途中的无票乘车人数,专业汽车运输公司的日运量高达数万人,以至数十万人,不可能上路逐人检查,只有从稽查组抽样调查,计算出无票乘车率。(四)和全面调查相比较,抽样调查简便易行,抽样调查的单位比全面调查少

15、得多,因而能省时省力,迅速地得到调查结果。例如人口普查全面普查要花费大量的人力,物力和专门长时刻,因此,有时也用抽样调查的方法。1987年我国确实是用1%抽样调查的方法普查人口总数。(五)有时抽样调查的结果比全面调查更准确。全面调查的调查单位多,涉及面广,参加调查汇总的人员也多,统计水平参差不齐,误差也较大。抽样调查的调查单位少,汇总人员少,能够选择统计水平高的人员参加,误差相对小一些。抽样调查尽管在质量治理中作用专门大,用途专门广,然而它只能提供讲明整个总体情况的统计资料,方便提供各种详细分类的统计资料。因此,抽样调查和全面调查不能偏废,也不能互相代替,必要时还要同时使用。五、QC工具概述Q

16、C工具是指全面质量治理常用的数理统计方法。通过这些方法把收集的数据加工整理、分析、处置、达到操纵工序质量,预防质量缺陷和提高质量的目的。现在常用的QC工具为新老“QC七法”,“老七法”是:分层法、因果图法、排列图法、调查表法、直方图法、散布图(也叫相关图)法、治理图(也叫操纵图)法。“新七法”是:关系图法、KJ法、系统图法、矩阵图法、矩阵数据分析法、PDPC法、箭条图法、汽车运输企业目前使用较多的是“老七法”,下面重点介绍“老七法”。第二节 分层法把收集到的数据按照不同的标志分类,再进行加工整理的方法叫分层法。分层法也叫分类法或分组法,分层的目的是把错综复杂的质量阻碍因素分析清晰,使数据能更加

17、明确地反映质量活动规律。例如一场排球,假如连输三局,那么一共失误45分,从总数上看不出问题出在哪里,教练员一定要用分层法进行分析的。假设失误情况如下:接发球失误15分,发球失误10分,拦网失误8分,扣球失误7分,配合失误5分从分层统计表上能够看出要紧问题出在接发球失误和发球失误上,针对这两个薄弱环节训练,再赛时就可能获胜。假如不用分层法,不作具体分析,认为输了确实是实力不如对方,那么,再战时依旧要失败。汽车运输企业对质量数据的分层能够按照以下标志进行:(一)按人员分:按不同工作人员的年龄、工龄、性不、文化程度、技术业务水平、思想素养等标志分层。(二)按机具、设备分:即按照不同的车型、厂房、站房

18、、机器、设备、设施、不同的机、手工具等标志分层。(三)按原材料分:即按生产原料的不同产地、制造厂、成分、规格、机号、到货日期等标志分层。(四)按运输方式分:如长途、短途、农公、旅游、包车、整车、零担、联运、集装箱等。(五)按旅客、物资的构成因素分:旅客有长途、短途、都市、农村、工人、农民、干部、学生等。物资有建筑材料、日用百货、鲜活物品、农副产品、轻工业物资、重工业物资等。(六)按工艺方法分:如不同的驾驶操作,车站服务、保修工艺等。(七)按治理水平分:如不同的行政治理、专业技术、质量治理方法、思想政治工作方式等。(八)按检验方法分:如不同的检验方式,不同的检验工具,不同的取样方法等。(九)按时

19、刻分:如年、季、月、旬、日、白天、黑夜等。(十)按气候分:如春、夏、秋、冬,雨、雾、雪、晴等。(十一)按环境分:如不同的社会条件,自然环境、政治形势,道路通过能力等。分层的标志专门多,在分析不同的质量问题时,不要机械、呆板地套用,要依照具体情况灵活地确定。分层法经常与其他方法结合使用,例如画排列图时就首先要将数据分层,作出分层统计表,具体运用下面再讲。第三节 排列图法一、概念和原理排列图又叫巴雷特图,按照实际应用的含义也能够称为主次因素排列图。它是从阻碍质量的若干因素中找出要紧因素的一种数理统计方法。排列图由意大利经济学家巴雷特始创,他在分析意大利社会的财宝分布状况时发觉绝大多数人处于贫困状态

20、,少数人占有社会的绝大部分财宝。他运用排列图直观的反映了这种“关键的少数、次要的多数”的关系。后来美国质量治理专家朱兰把那个差不多原理应用于质量治理,发觉尽管阻碍产品质量的因素专门多,但真正起到关键作用的仅仅是少数几项,而他们造成的不合格品却占总数的大部分,因此他利用“关键的少数,次要的多数,”那个差不多原理对质量数据进行分类排列,以直观的方法表明阻碍质量的主次因素。这确实是排列图在质量治理中的应用。二、差不多格式排列图一般由两个纵坐标、一个横坐标、几个直方形和一条曲线所组成。(一)左边的纵坐标表示频数,即不合格品的件数、次数、损失金额等。(二)右边的纵坐标表示频率,即不合格品的百分比。(三)

21、横坐标表示阻碍质量的各个因素或项目,按阻碍程度的大小从左到右顺序排列。(四)直方形的高度表示某项因素阻碍的大小。(五)曲线即巴雷特曲线,表示各阻碍因素的累计百分比,通常把累计百分比分为A、B、C三类。080%为A类因素(A虚线包含部分),是要紧因素;80%90%为B类因素(B虚线与A虚线之间的部分),是次要因素;90%100%为C类因素(C虚线与B虚线之间部分),是一般因素。图5-9 排列图6060309012015020406080100ABC频数(件次)00N=98频率%三、举例作图例题:某客运车站某月晚点班次数为98班,经分析晚点缘故要紧是:驾驶员责任;发车员责任;车况不良;道路堵塞;气

22、候不行,还有一些其他缘故。试作排列图分析。作图方法如下:(一)先将98个晚点班次按不同的缘故分层统计,作出分层统计表序号原 因频数(班次)频率(%)累计频率(%)1驾驶员责任4647472车况不良3031783发车员责任1111894道路堵塞44935气候不行33966其他缘故44100合 计:98100作分层统计表时注意将阻碍因素从大到小顺序排列,“其他”一栏放在最后。(二)画出两个纵坐标和一个横坐标,在左边纵坐标的最高点标上“100”,(略高于晚点班次数98。如总数是48,最高点则可标为“50”)在右边纵坐标与左边刻度98齐平的地点标上“100%”,因为分层统计共有六项,因此将横坐标六等份

23、,并表上序号。(如图53)(三)以各项目的频数为高度,依次画出直方,如第一项驾驶员责任为46次,则以右边横坐标46的高度画出第一个直方,以下类推(如图54)20 40608010050%20 40608010050%100%20 40608010050%100%图5-3 图5-4(四)画出巴雷特曲线,在第一个直方图的右上角点一个点,标出该直方的百分比“47%”,把第二个直方的右边线延长,在第二项与第一项的累计频率78%的高度打一个点,并表上“78%”,以下类推,将所有的点连接起来即为巴雷特曲线。(五)讲明统计总数(用N=x表示),频数单位、各项目频数高度、图题等必要事项,一个排列图就画成了(如

24、图55)现将作图步骤简单归纳如下:第一步:作分层统计表;第二步:画纵横坐标;第三步:画直方;第四步:画巴雷特曲线;第五步:注明必要事项。图5-5 排列图 频率(%)频率(%)50%100%20406080100N=9847%78%89%93%频数(次) 96% 0 0%1 2 3 4 5 6 1 2 3 4 5 6四、观看方法和注意事项:(一)排列图作好后要分析要紧因素,次要因素和一般因素,即作出ABC分类线,观看阻碍质量问题的要紧因素是哪一次或哪几项,如举例要紧因素是驾驶员责任和车况不良,应该针对这两个问题进一步排出产生问题的缘故,进而采取措施,予以解决,以后逐步解决次要问题和一般问题。(二

25、)一般情况下,要紧因素只能是一个,两个,最多不超过三个。假如要紧因素包含的项目太多,就失去了抓住要紧矛盾的意义,需要重新分类。(三)描述质量缺陷的排列图,除了用缺陷数为频率外,还能够用损失金额,损失工时等反映经济效益的数据为频数作图,作图结果,要紧因素可能会发生变化。例如,在竞争中晚点会带来经济损失,例中的要紧因素“驾驶员责任”引起的晚点一般时刻较短,带来的经济损失专门少,甚至没有;而因路阻、车况不良等缘故引起的晚点则可能带来较大的经济损失,重新分类后位置就会发生变化。(四)一般因素较多时,能够列入“其他”栏内。因此,“其他”栏可能比前面的项目频数高,但为了分析方便仍将“其他”栏放在最后。(五

26、)数据分层标志不能只看现象、机械地排列,而要依照阻碍质量的缘故分,如例中晚点班次能够按时刻,班组,线路划分,但真正排找缘故依旧要按阻碍因素分层,为了透彻和分析缘故,有时还要同时从几个不同的方面进行分类,画出几种排列图。(六)找出要紧因素,并采取响应措施后,为了检查效果,还要重新画出排列图,以便对比。总之,运用排列图观看和分析问题有专门多好处,概括起来确实是“直观形象,简单清晰,主次分明,易学易用”。不管是在生产第一线,依旧在治理岗位都能够运用。因此,排列图法是汽车运输企业推行全面质量治理使用最广泛的差不多方法。第四节 因果分析图法一、因果分析图是查找质量问题产生缘故的图,也叫特性图。图形状象树

27、枝或鱼刺,也叫树枝图或鱼刺图,其差不多形状如图56如图所示,因果分析图由缘故和结果两部分组成。结果是我们所要分析的质量问题,缘故由主干、大枝、中枝、小枝所组成。主干是指向质量缘故的一条水平线。大枝是表示产生质量问题的几大类因素,一般从人、机、料、法、环五大因素分析缘故,也可增减或从其他角度分析;中枝是各类大缘故中分析出的具体因素;小枝是在中缘故的基础上进一步分析出的更具体的因素。 图5-6因果图人人机料中缘故(中技)法环法环汽车运输企业产生的质量问题,大体上都能够从工程质量的五大要素(人、机、料、法、环)上查找缘故。然而各种具体的质量问题往往不是一种或几种缘故的结果,常常是多种复杂因素综合作用

28、的结果。要从这些错综复杂的因素中找出头绪,找到真正起作用的因素,找出关键因素,并不是一件轻而易举的情况。只有层层深入地具体分析,才能真正分析出阻碍质量的具体缘故。因果分析图确实是如此一种分析和查找质量缘故的简便有效的科学方法。具体运用因果分析法,要发动群众,集思广益,把大伙儿的意见集中起来,画到一张树枝状的图上,全面系统的,直观形象的反映问题。要依靠群众的智慧和力量,进一步分析缘故与缘故之间的关系,从交错复杂的大量阻碍因素中理出头绪,找出要紧缘故,从而制定解决问题的打算措施。因此,使用因果分析图是发动群众参加质量治理,发挥全员治理的作用,解决质量缺陷的一种好方法。二、举例分析这是某车站分析经营

29、方法不适应竞争形势的因果分析图(见图57),图中按“人员”、“治理”、“方法”、“设施”、“环境”四大缘故分类排出中缘故和小缘故,大缘故要紧是起分类作用,小缘故才是能够采取对策的缘故。三、作图方法(一)确定质量特性。制作因果图时首先要明确分析什么问题,一般来讲应选择质量关键或对质量阻碍较大的需要解决的问题作为分析对象。(二)确定大缘故。大缘故不一定都机械地按人、机、料、法、环五个方面分类,也不一定是五个,本例是分析车站工作质量问题,材料因素是次要的,没有列入。(三)依照大缘故分不排出各类大缘故的各种中缘故,要求分类恰当,不能张冠李戴,不要把这方面的因素列到那方面去,比较容易混淆的是环境和设施,

30、人员和治理因素。(四)依照各项中缘故分析出更具体的小缘故(又叫末梢缘故)。小缘故要求越具体越好,一定要分析到能够采取对策,然而不要包罗万象,要紧扣主题排出直接缘故,以便针对缘故采取措施。(五)标明图题,绘制日期,绘制单位等必要事项。四、注意事项(一)因果分析图是用直观形式反映质量问题的,然而切不可把要紧注意力放在形式上,尽管这种形式一学就会,真正用好却不容易。有些阻碍质量的因素并不是凭直觉就能发觉的,假如没有较丰富的业务知识,没有较强的观看分析能力,对质量治理过程没有较全面、透彻的认识,就无法准确地找出阻碍质量的缘故,那么所作的因果分析图也只能是流于形式。(二)不能闭门造车,要集思广益。光凭一

31、个人的认识和智慧往往有较大的片面性,因此要召集职工,质量治理人员,专业技术人员及行政治理人员召开分析会议,充分发扬民主,如此不仅能较准确地利用,而且有利于对策实施。(三)在分析各种缘故时,要主次分明,层次清晰,不要简单排列。(四)因果分析图画好后要放到实践中去验证,发觉与实际情况不符的要及时修改。(五)因果分析图中的缘故大多是阻碍质量的问题,而不是某种表面现象或正确的做法,成功的经验。(六)画图时要注意形状的匀称、美观、清晰、便于观看。五、分析和确认要紧缘故要紧缘故只在小缘故,即末梢缘故中分析,要将所有的末梢缘故都列出,逐项分析,确定的主因不要太多,更不能将所有的末梢缘故都确认为主因,一般四、

32、五项即可。主因的确认不能仅凭主观推断,一定要通过现场考察、现场验证、现场测量、数据分析等客观方法确定。第五节 检查表法检查表法又叫统计分析表法,是利用统计调查表来进行数据整理和粗略分析缘故的一种工具。这种方法汽车运输企业运用十分广泛,如行车路单、接发车记录、事故调查、工作质量检查、各种原始记录、报表等不下于几十种。然而那个地点重点介绍的是用于全面质量治理的一种专门检查表对策表。对策表是QC小组在制订打算措施时常用的一种方法。对策表既是实施的打算,也是检查对比的依据。一般应包括以下几个项目:序号要因对策目标值措施执行者完成时刻实施地点其中,“要因”栏要紧是阻碍质量的具体缘故,一般是从因果分析图中

33、的末梢缘故中确认获得。为解决要因问题需制订对策表,这张对策表是总的要求,要紧起到职责分工,对比检查的作用,各执行人还要按照分工制定更具体的实施细则,实施细则仍然用对策表的格式,但把“执行人”写在标题中,成为“解决问题对策表”,目标值最好要具体数据值表示,以便检查对比完成的情况。对策表定好后实施过程中可依照具体情况作部分修改,但改动不宜过多,修改时还要征求QC小组其他成员的意见,有分歧意见则不宜修改,以保持QC程序的一致性。第六节 直方图法一、差不多概念直方图,是用于工序质量操纵的一种质量数据的分布图。它是把从工序中收集来的质量数据分布情况画成以组距为底边,以频数为高度的一系列直方形连起来的图形

34、。其差不多形式如图58 直方图差不多形式TT频数 XX图中纵坐标表示频率或频数,横坐标表示质量特性,每个直方的底边长度代表产品质量的取值范围,每个直方块的高度表示落在那个质量特性范围内的数据个数。二、作图方法:试以本行业实例讲明作图方法。某单位为了试行单车承包经营责任制,对全公司车辆的单位成本进行抽样调查,被抽查的100辆车报告期单位成本如表54表中数据除第一个15.45外,其余的因整数部分差不多上15,因而省略不写,如第二个30,表示该数为15.30,如此记录简单,计算也简便。具体作图步骤如下:确定分组数数据分组要恰当,太少会掩盖各组频数分布的变化,太多会造成各组高度参差不齐,也不便计算。表

35、5-4 客车单位成本抽样调查数据表单位:元/千人公里抽样调查所得数据列中最大值列中最小值15.45302928353120263416451636243231242624305035032631373832361644408448303424273841262030184120403823222822201014394010423030143233322830494914443436223036222629264422312023481612232436244812303022401434213230214014332226372230262634424222依照经验,组数大体按如下关系确定:

36、50-100个数据,分为6-10组;100-250个数据,分为7-12组;250以上数据,分为10-20组。本例取100个数据,分为10组,组数以K表示,即K=10(二)确定组距组距即组与组之间的间隔,用H表示,计算方法如下:=4.75=H=最大值最小值 LaSm 503 =4.75=H= 组数 K 10(三)确定各组上下界限值从理论上讲,各组的下界限值加上组距即为上界限值,第一组的下界限值为最小值Sm,顺次加组距即得到各组的下界限值和上界限值。然而如此所取得的数据有可能与界限值重合,因此界限值应比测量精度多取一位小数。最小计量单位最小计量单位 2具体方法是:下界限值=Sm 本例最小单位是0.

37、01元即1分, 1 2则 第一组下界限值=3 =2.5第一组上界限值为下界限值加组距即2.5+5=7.5第一组上界限即第二组下界限值,再加上组距H即为第二组上界限值,依次类推,得各组界限值。(四)填写频数分布表频数分布表的格式如表55,能够成批印制这种表式,随用随填,十分方便,填制步骤如下:1、填组界。算出第一组上下界限值可依次加上组距即可。2、填组中值。组中值即“上限+下限2”,以后顺次加上各组距即为下一组的组中值。如第一组组中值为(2.5+7.5)2=5,再加上组距5即为第二组组中值,余下类推。3、统计各组频数。统计时在“频数统计”栏内划线记数或划“正”记数。做这步工作要细心,每组统计数字

38、后要在数据表上做记号,否则少记一个要全部返工,造成重复劳动。全部记数以后要核对总频数是否正确,差一个、多一个都要重新统计。核对正确将各组统计数字填入“f”栏(频数栏)内,并在合计栏(栏)内填写合计频数,本例为100,即填“N=100”。4、计算各组简化中心值u简化中心值为了计算方便,将各组的组中值同减去频数最大一组的中心值(Xo)再除以组距而得,本例第六组频数25为最大,因此各组中值都减去该组中值30,再除以组距5,便得到“u”栏的数字。5、计算频数与简化中心值的乘积fu这是加权平均法的计算步骤,差不多原理前面差不多讲过,计算时将各组“f”栏数据乘上“u”栏数据即可。最后填上累计值,本例为“2

39、4”。表5-5 直方图频数分布表 年 月 日组号组 界组中值分布频数统计FUFUFU2AE法 12.57.551-5-5251127.512.5103-4-124845312.517.5156-3522.52014-2-28562439D522.527.52519-1-191943C0627.532.5302600000732.537.535151151531A0837.542.54010220401625B942.547.54533927691047.552.55034124833H=5=30N=100-2633QE=98计算公式:6、计算fu(频数与简化中心值平方

40、的乘积)这是计算标准偏差的步骤,用“f”栏数据乘以“u”栏各数的平方,或用“u”数据乘以“fu”栏的数据均可。最后填上累计值,本例为336。7、计算平均值 计算平均值能够用两种方法,一种是变换数法,一种是AE法。(1)变换数法计算公式为:fu n= Xo+hfu n-26100本例=30+5 =30+(-1.3)=28.7-26100(2)AE法AE法比变换数法更简便,用那个方法就不需要计算u、fu、fu2三栏的数据,只要算出AE法、两栏即可。栏计算方法:仍然把频数最大的一栏定为O,上面一栏为C,下面一栏为A。然后把f栏最上边和最下边的数移过来,本例为1和3。上边第二个数字为f栏前两个数字的累

41、计值1+3=4;第三个数字为f栏前三个数字的没累计值1+3+6=10,以下类推。O以下的各数,用同方法自下而上累加。栏计算方法:依旧把频数最大的一栏为O,并在上下方各填一个O。O以上一栏为D,以下一栏为B。栏的各数为栏各数的累计值,计算方法同上。、栏各数填好后便可按公式计算。(A+B)-(C+D)(A+B)-(C+D)N(31+25)-(43=39)100-26100=X0+H =30+5 =30+5=30+(-1.3)=28.78、计算标准偏差S:依照俄国数学家契比雪夫定理,用标准差能够精确地确定落在平均数两例某个范围内的频率分布值有多少。所谓标准差即各变量值与它的算术平均数的偏差,计算标准

42、差时先将各项离差数自乘,消去负号,平均以后再开平方根还原。本例 S=99、画直方图直方图与排列图有相通之处,学会了画排列图,能够把部分作图步骤运用到直方图上来。具体步骤如下:(1)画一个直角坐标。纵坐标表示频数,最高刻度略高于最高一组的频数即可,本例最高频数为26,最高刻度可定为30。横坐标表示质量特性,其刻度应包含所取数据的最大值和最小值(本例为50和3),还要包含公差(即质量波动的同意范围),设本例公差上限和下限分不为55和0,那么横坐标应稍长于55,以幸免纵坐标与下限重合。(2)在图上标上N、X、S等特性值和规格上、下限X虚线,直方图便差不多完成。图59 30N=100X=15.287N

43、=100X=15.287S=9T20151050 15.00 15.025 15.075 15.125 15.175 15.225 15.275 15.325 15.375 15.425 15.475 15.525 15.55 (元/千人公里)直方图的观看分析直方图的观看要紧是看两个方面,一是看图形的形状,二是把直方图的位置和规格标准进行比较。1、直方图的几种常见形状(见图510)(1)正常型。又称对称型,特点是中间高、两边低、左右差不多对称,这是理想状态的图形,讲明工序稳定。(2)孤岛型。在直方群以外又出现小的直方组像孤岛一样。讲明有异常质量波动,如车型变化,燃料、轮胎或其他配件供应异常,新

44、驾驶员等。(3)偏向型。直方的顶峰不在中间位置,偏向一边,有时是数据分组不当所致,有时质量分布本身确实是这种规律,如春节运输期间的日运量确实是偏向型的分布。(4)双峰型。直方图中出现两个高峰,这是把两种不同类型的数据混在一起造成的。如两种不同的车型混合抽样,或两种不同营运方式的车辆混合抽样所致。(5)平顶型。直方的高度差不多,频数分布详尽。这是有缓慢的因素起作用所造成的,如车辆老旧,保修质量下降,人员素养逐步下降等。(6)锯齿型。直方参差不齐形如锯齿,可能是数据分组过多或计算有误,应重新分组计算。图5-10 (1) 正常型 (2) 孤岛型(3) 偏向型 (4) 双峰型(5) 平顶型 (6) 锯

45、齿型2、用直方与公差进行对比要紧是看直方图是否都在公差要求之内,在公差之内还要看位置如何,这种对比大体上也有六种情况(见图511,图中B为数据分布范围,T为公差范围)图5-11 直方图中实际分布范围B与公差T对比情况TBTBTBTBTBTBTB(1) (2)(3)(4)(5) (6)(1)B在T的中间,平均值也正好与公差中心重合,两边有一定的余地,如此的质量状态比较理想。(2)B虽在T内,但因偏向一边,随时有超差的可能,须采取措施把分布范围向中间移动。(3)B虽在T内,但完全没有余地,不小心就会超差,必须缩小分布范围。(4)B大于T,这时有两种处理方法,一是从经济性动身降低标准扩大公差范围,一

46、是坚持从标准动身缩小分布范围。(5)B与T偏离位置过多,造成专门多不合格品,应立即采取措施纠正。(6)B分布范围太大,产生了超差,应采取措施缩小B。本例作出的直方图为理想状态,这是为了适合教学需要作了一些处理,事实上汽车运输企业质量治理中作出的直方图一般都不是理想形的图,因为运输生产不象成批产品的加工制造那样严格地操纵规格尺寸。因此直方图能反映质量分布,估算不合格率即可,因此应把重点放在如何依照直方图采取措施提高质量方面,而不是看图形是否标准。第七节 操纵图法一、概念和原理操纵图也叫治理图,是用于分析和推断工序是否处于稳定状态所使用的带有操纵界限的一种图形,它的作用是通过图形来显示生产随时刻变

47、化的过程中质量波动的情况,分析和推断是偶然性缘故依旧系统性缘故所造成的波动,从而提醒人们及时作出正确的对策,消除系统因素的阻碍,保持工序处于稳定状态,预防废品产生。二、差不多形式操纵图差不多形式如图512所示,图上一般有一个直角坐标,纵坐标为特性值,横坐标为样本号或时刻。坐标中有三条线,中间的一条线叫中心线,常用实线表示并标上符号CL,上面的一条线叫上操纵线,用虚线表示,标上符号UCL;下面的一条线叫下操纵线,用虚线表示,标上符号LCL。这三条线是通过搜集过去一段生产稳定状态下的数据计算出来的。操纵线的范围为3(为标准偏差),在那个范围内,我们推断失误的可能性仅为千分之三,那个误差能够忽略不计

48、。 ucl cl lcl 三、操纵图的分类:操纵图要紧分为两大类:计量值操纵图和计数值操纵图。(一)计量值操纵图1、-R操纵图(平均值、极差操纵图)这是一种最常用,最差不多的操纵图。可用于操纵长度,重量、时刻、生产量等计量值可反映的工序质量。那个地点的计量是指的平均值,汽车运输企业的绝大部分质量数据的平均值都能够是计量值,因此,如运量、周转量、营收成本,利润、安全质量指标,正点率、正班率、无票乘车率等都能够用-R操纵图加以操纵。其中,操纵图要紧用于观看质量分布的平均值的变化,R操纵图要紧用于观看分布的分散情况的变化。-R操纵图将两种图联合运用既能够操纵质量分布又能够操纵离散程度,对工序的操纵能

49、力专门强,专门受治理人员和生产工人的喜爱。2、-R操纵图(中位数、极差操纵图)它与-R操纵相似,只是用中位数代替平均数X。由于的计算比简单,故多用于在现场需要把测定数据直接记入操纵图而进行治理的场合。3、X操纵图(单值操纵图)用于每取一个数据,需要较长时刻的场合。如行车事故,定站停靠率、商务事故、意外损害、质量事故等。由于不象前两种操纵图那样能取得较多的信息,因此灵敏度较差。(二)计数值操纵图:1、P操纵图(不合格品率操纵图)用于操纵对象为不良品率的场合,如售票差错率,返修率等。2、Pn操纵图(不合格品数操纵图)用于操纵对象为不良品个数的场合。P为不良品率,n为样本大小,Pn即不良品个数,因此

50、以Pn为样本中不良品个数的记号。Pn操纵图可用于售票差错张数,晚点班次数,抛锚次数,维护返修车次等不良品次数的操纵。3、C操纵图(缺陷数操纵图)用于操纵对象为一部机器,一个部件,一定的长度,一定的面积或任何一定的单位中所出现的缺陷数目,如镀件上的砂眼数,机器设备的缺陷数或故障次数等。4、u操纵图(单位缺陷数操纵图)它与C操纵图的不同之处在于:当样品的大小不变时使用C操纵图,当样品的大小有变化时则应使用u操纵图。U操纵图是操纵每单位中的缺陷数,如万车公里事故次数,万张票差错次数等。操纵图的种类专门多,以上是常用的几种,其中-R图是最常用、理论依照最充分、最灵敏的一种,下面应用实例介绍它的做法。四

51、、举例作图制作-R图时,首先要确定平均数X的总平均值(读X罢罢)和极差的平均值R。确定时需抽取2025个子样组,测出样本数据,然后依照他们来计算值和R值。计算方法如下: 1+21+2+kk = 式中:1,2Xk为各子样组内平均数,K为子样数。1+1+2+k k=式中:1,2,k为各子样组内极差值。平均值操纵图的上下界限计算方法如下:UCL=+A2RLCL=-A2R式中:UCL为上控线 LCL为下控线 A2为系数,其大小取决于子样组内样品数目(见表5-6)极差操纵图的操纵界限可依照平均极差值来确定。关于R图来讲。因为R总是正值,在理想的情况下,子样内各样品的尺寸完全相同(R=0)因此操纵图上最要

52、紧的是上操纵界限(UCL)和中心线(R),下操纵界限相对来讲不太重要,极差一般情况下是越小越好,有时则能够不画下操纵界限。(表5-6) 操纵 图 用 系 数 表系数NA2D3D4m3A2E21d221.8803.2671.8802.6600.88631.0232.5751.1871.7720.59140.7292.2820.7961.4570.48650.5772.1150.6911.2900.43060.4832.0040.5491.1340.39570.4190.0761.9240.5091.1090.37080.3730.1361.8640.4321.0540.35190.3370.18

53、41.8160.4121.0100.337100.3080.2231.7770.3630.9750.325现举例讲明某汽车运输企业为了加强经济核算用-R操纵图操纵单位收入,每天随机抽取五辆车测算,一共20天取得100个数据如表57,试作出-R操纵图。解:(一)填数据记录表表5-7R操纵图数据记录表组号X1X2X3X4X5XR10.0240.0200.0200.0240.0180.0210.00620.0160.0230.0200.0230.0190.0200.00730.0200.0210.0200.0180.0180.01940.00340.0210.0200.0190.0220.0230.

54、02100.00450.0210.0220.0180.0170.0200.01960.00560.0190.0200.0190.0180.0220.01960.00470.0200.0210.0210.0200.0190.02020.00280.0220.0240.0170.0210.0210.02100.00790.0220.0220.0240.0160.0200.02080.008100.0180.0200.0240.0190.0220.02060.006110.0190.0210.0220.0210.0180.02000.004120.0190.0250.0170.0210.0200.0

55、2040.008130.0210.0160.0180.0200.0230.01960.007140.0220.0180.0190.0180.260.01860.006150.0210.0180.0190.0220.0190.01980.004160.0200.0200.0210.0220.0230.02120.003170.0230.0240.0200.0190.0220.02160.005180.0160.0180.0210.0170.0200.01840.005190.0210.0200.0180.0200.0210.02000.003200.0230.0200.0210.0190.022

56、0.02100.004合计0.4050.101平均=0.020=0.005数据记录表可直接按固定格式统一印制,如表57,每次使用时将收集的数据填入即可。收集数据应在50个以上,本例搜集了100个。将所取数据分组,一般每组35个数据,本例每组5个数据,共20组。计算各组平均值= X1+X2+X3+X4+X5= n将计算出的数据分不填入各组一栏。(三)计算各组的极差R各组的极差为组内最大值减最小值之差。R=X大X小将算出的数据填入各组R栏计算总平均值= = K计算各组极差值的平均值 = R 本例=0.005= K(六)计算中心线和操纵界限图中心线CL=X=0.020图上操纵线UCL=X+A2R=0

57、.020+0.5770.005=0.020+0.003=0.023图下操纵线LCL=XA2R=0.0200.5770.005=0.0200.003=0.017R图中心线CL=R=0.005R图上操纵线UCL=D4R=2.1150.005=0.011R图下操纵线LCL=D3R 本例N7,D3无值,因此下操纵线无须画出。其中A2、D4、D3都能够从操纵图系数表中查出,本例N=5,即从N栏中找到,在5横列中与A2相对应的即A2系数,与D4相对应的即D4系数,与D3相对应的即D3系数。(七)画操纵图将上面计算出的操纵界限画在坐标纸上如图513,上部为治理图,下部为R治理图。横坐标刻度为样本组编号,虚线

58、为操纵界限线,实线为中心线。各组X和R值按样本组编号分不在响应的坐标处打点,然后用折线连接各点,再标注必要事项,-R操纵图便作成。五、操纵图的观看分析作操纵图的要紧目的是分析推断生产过程是否稳定,是否处于操纵状态。处于操纵状态必须满足两个条件:1、点子没有超出操纵界限。2、点子在操纵界限内排列没有缺陷。反之,出现以下两种情况可推断生产过程失控:1、点子超出操纵界限2、点子在操纵界限内排列有缺陷凡有下列情况之一即推断为排列有缺陷:(1)点子在中心线一侧连续出现9次。(2)连续出现6点上升或下降的倾向。(3)连续14点中相邻的点子总是上下交替。(4)连续3个点中有2个点落在中心线同一侧的B区以外。

59、(5)连续5点中4点落在中心线同一侧的C区以外。(6)连续15点落在中心线两侧的C区以外。(7)连续8点落在中心线两侧且无一点在C区。以上8种缺陷见图514图5-14 生产过程失控情况推断 本例客车单位收入-R操纵图差不多上处于操纵状态。如有点子超出界限则可能有浮收运费现象,如有缺陷则应分析缘故分不采取措施予以解决。因此这是从理论上进行分析,具体实践当中还有许多其他因素,不可一概而论。然而决不可因此而认为操纵图在汽车运输企业不适用,关键是如何熟练地、灵活地适用上下工夫,为治理自动化打下基础。第八节 散布图(相关图法)一、概述散布图又称相关图,是将两种因素的数据列出,并用“点”填在坐标纸上,观看

60、两种因素之间关系的图。这种关系分析就称为相关分析。简言之,散布图即表示两个变量之间变化关系的图。相关的两个变量之间的关系有一种是完全确定的函数关系,例如同一档次的里程与运价,周转量与运价,同一线段的运量与周转量等,只要明白其中一个数据就能够准确地计算出另一个数据,还有一种是非确定性的关系,它们之间的关系不能用确定的函数来表示,不能由一个变量的数值精确地求出另一个变量的值。例如人的身高与体重,父亲的身高与儿子的身高,驾驶员的工龄与安全行驶里程,修理工的工龄与技术等级,工资与技术水平等等,上述相关的因素之间有紧密的联系然而不能由一个数值准确地求出另一个数值。它们之间的关系只能借助于数理统计方法来描

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论