版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知正方体的棱长为2,P是底面上的动点,,则满足条件的点P构成的图形的面积等于( )ABCD
2、2已知离散型随机变量的概率分布列如下:0123 0.20.30.4 则实数等于( )A0.5B0.24C0.1D0.763f(x)是定义在(0,)上的单调增函数,满足f(xy)f(x)f(y),f(3)1,当f(x)f(x8)2时,x的取值范围是()A(8,)B(8,9C8,9D(0,8)4设、是两个不同的平面,、是两条不同的直线,有下列命题:如果,那么; 如果,那么;如果,那么;如果平面内有不共线的三点到平面的距离相等,那么;其中正确的命题是( )ABCD5一个口袋内有12个大小形状完全相同的小球,其中有n个红球,若有放回地从口袋中连续取四次(每次只取一个小球),恰好两次取到红球的概率大于,
3、则n的值共有( )A1个B2个C3个D4个6的值等于( )A7351B7355C7513D73157设是虚数单位,则复数的虚部等于( )ABCD8一个篮球运动员投篮一次得3分的概率为,得2分的概率为,得0分的概率为0.5(投篮一次得分只能3分、2分、1分或0分),其中、,已知他投篮一次得分的数学期望为1,则的最大值为ABCD9下列函数一定是指数函数的是()ABCD10已知直线的倾斜角为,直线与双曲线 的左、右两支分别交于 两点,且都垂直于轴(其中 分别为双曲线的左、右焦点),则该双曲线的离心率为ABCD11已知某次数学考试的成绩服从正态分布,则114分以上的成绩所占的百分比为( )(附,)AB
4、CD12若复数满足,其中为虚数单位,则在复平面上复数对应的点的坐标为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13从1,2,3,4,5中任取2个不同的数,事件A“取到的2个数之和为偶数”,事件B“取到的2个数均为偶数”,则P(B|A)_.14函数的图像在处的切线方程为_.15中,角 的对边分別是,已知,则 _.16如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数f(x)|xa|x2
5、|的定义域为实数集R.(1)当a5时,解关于x的不等式f(x)9;(2)设关于x的不等式f(x)|x4|的解集为A,若BxR|2x1|3,当ABA时,求实数a的取值范围18(12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴正半轴重合,直线的参数方程为:(为参数,),曲线的极坐标方程为:.(1)写出曲线的直角坐标方程;(2)设直线与曲线相交于两点,直线过定点,若,求直线的斜率. 19(12分)已知定义在区间上的函数,.()证明:当时,;()若曲线过点的切线有两条,求实数的取值范围.20(12分)某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说
6、”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.(1)根据题意,请将下面的列联表填写完整;选择“西游传说”选择“千古蝶恋”总计成年人未成年人总计(2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.附参考公式与表:().0.1000.0500.0250.0100.0012.7063.8415.0246.63510.82821(12分)设函数的最小值为.(1)求实数 m 的值;(2)已知,且满
7、足,求证:.22(10分)2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为关注不关注合计青少年15中老年合计5050100(1)根据已知条件完成上面的列联表,并判断能否有99%的把握认为关注“一带一路”是否和年龄段有关?(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望附:参考公式,其中临界值表:0.050.0100.0013.8
8、416.63510.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】P是底面上的动点,因此只要在底面上讨论即可,以为轴建立平面直角坐标系,设,根据已知列出满足的关系【详解】如图,以为轴在平面内建立平面直角坐标系,设,由得,整理得,设直线与正方形的边交于点,则点在内部(含边界),易知,故选A【点睛】本题考查空间两点间的距离问题,解题关键是在底面上建立平面直角坐标系,把空间问题转化为平面问题去解决2、C【解析】根据随机变量概率的性质可得,从而解出。【详解】解:据题意得,所以 ,故选C.【点睛】本题考查了概率性质的运用
9、,解题的关键是正确运用概率的性质。3、B【解析】令x=y=3,利用f(3)=1即可求得f(1)=2,由f(x)+f(x8)2得fx(x8)f(1),再由单调性得到不等式组,解之即可【详解】f(3)=1,f(1)=f(33)=f(3)+f(3)=2;函数f(x)是定义在(0,+)上的增函数,f(xy)=f(x)+f(y),f(1)=2,f(x)+f(x8)2fx(x8)f(1),解得:8x1原不等式的解集为:(8,1故选:B【点睛】本题考查抽象函数及其应用,着重考查赋值法与函数单调性的应用,考查解不等式组的能力,属于中档题4、B【解析】根据线面垂直与线面平行的性质可判断;由直线与平面垂直的性质可
10、判断;由直线与平面平行的性质可判断;根据平面与平面平行或相交的性质,可判断.【详解】对于如果,根据线面垂直与线面平行性质可知或或,所以错误对于如果,根据直线与平面垂直的性质可知,所以正确;对于如果,根据直线与平面平行的判定可知,所以正确;对于如果平面内有不共线的三点到平面的距离相等,当两个平面相交时,若三个点分布在平面的两侧,也可以满足条件,所以错误,所以错误;综上可知,正确的为故选:B【点睛】本题考查了直线与平面平行、直线与平面垂直的性质,平面与平面平行的性质,属于中档题.5、C【解析】设每次取到红球的概率为p,结合独立事件的概率的计算公式,求得,再由,即可判定,得到答案.【详解】由题意,设
11、每次取到红球的概率为p,可得,即,解得,因为,所以,所以或6或7.故选:C.【点睛】本题主要考查了独立事件的概率的计算公式及其应用,其中解答中正确理解题意,合理利用独立事件的概率的计算公式,求得相应的概率的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、D【解析】原式等于,故选D.7、D【解析】分析:对所给的复数分子、分母同乘以,利用进行化简,整理出实部和虚部即可详解:复数的虚部为故选D.点睛:本题考查两个复数代数形式的乘除法,虚数单位的幂运算性质,两个复数相除时,一般需要分子和分母同时除以分母的共轭复数,再进行化简求值8、D【解析】设这个篮球运动员得1分的概率为c
12、,由题设知,解得2a+b=0.5,再由均值定理能求出ab的最大值【详解】设这个篮球运动员得1分的概率为c,这个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,得0分的概率为0.5,投篮一次得分只能3分、2分、1分或0分,他投篮一次得分的数学期望为1,解得2a+b=0.5,a、b(0,1),=,ab,当且仅当2a=b=时,ab取最大值故选D点评:本题考查离散型随机变量的分布列和数学期的应用,是基础题解题时要认真审题,仔细解答,注意均值定理的灵活运用9、D【解析】根据指数函数定义,逐项分析即可.【详解】A:中指数是,所以不是指数函数,故错误;B:是幂函数,故错误;C:中底数前系数是,所以不是
13、指数函数,故错误;D:属于指数函数,故正确.故选D.【点睛】指数函数和指数型函数:形如(且)的是指数函数,形如(且且且)的是指数型函数.10、D【解析】根据题意设点,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率.【详解】直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴,根据双曲线的对称性,设点,则,即,且,又直线的倾斜角为,直线过坐标原点,整理得,即,解方程得,(舍) 故选D.【点睛】本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题.圆锥曲线离心率的计算,常采用两种方法:1、通过已知条件构建关于的齐次方程,
14、解出.根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.2、通过已知条件确定圆锥曲线上某点坐标,代入方程中,解出. 根据题设条件,借助表示曲线某点坐标,代入曲线方程转化成关于的一元方程,从而解得离心率.11、C【解析】分析:先求出u,再根据和正态分布曲线求114分以上的成绩所占的百分比.详解:由题得u=102,因为,所以.故答案为:C.点睛:(1)本题主要考查正态分布曲线和概率的计算,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)利用正态分布曲线求概率时,要画图数形结合分析,不要死记硬背公式.12、C【解
15、析】利用复数的运算法则、几何意义即可得出【详解】z=,故选:C.【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解解:P(A)=,P(AB)=由条件概率公式得P(B|A)=故答案为点评:本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题14、【解析】对函数求导,把分别代入原函数与导数中分别求
16、出切点坐标与切线斜率,进而求得切线方程。【详解】,函数的图像在处的切线方程为,即.【点睛】本题考查导数的几何意义和直线的点斜式,关键求出某点处切线的斜率即该点处的导数值,属于基础题。15、【解析】化简已知等式可得sinC1,又ab,由余弦定理可得:cosCsinC,利用两角差的正弦函数公式可求sin(C)0,结合范围C(,),可求C的值【详解】c22b2(1sinC),可得:sinC1,又ab,由余弦定理可得:cosC1sinC,sinCcosC0,可得:sin(C)0,C(0,),可得:C(,),C0,可得:C故答案为【点睛】本题主要考查了余弦定理,两角差的正弦函数公式,正弦函数的图象和性质
17、在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于基础题16、【解析】作BEAD于E,连接CE,则AD平面BEC,所以CEAD,由题设,B与C都是在以AD为焦距的椭球上,且BE、CE都垂直于焦距AD,所以BE=CE. 取BC中点F,连接EF,则EFBC,EF=2,四面体ABCD的体积,显然,当E在AD中点,即B是短轴端点时,BE有最大值为b=,所以.评注 本题把椭圆拓展到空间,对缺少联想思维的考生打击甚大!当然,作为填空押轴题,区分度还是要的,不过,就抢分而言,胆大、灵活的考生也容易找到突破点:AB=BD(同时AC=CD),从而致命一击,逃出生天!三、解答题:共70分。解答应写出文字
18、说明、证明过程或演算步骤。17、 (1) xR|x3(2) 1,0【解析】分析:(1)当a5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求;(2)由题意可得BA,区间B的端点在集合A中,由此求得a的取值范围.详解:(1)当a5时, f(x)|x5|x2|.当x2时,由f(x)9,得2x39,解得x3;当5x9,得79,此时不等式无解;当x9,得2x39,解得x9的解集为xR|x3(2)ABA,BA.又Bx|2x1|3xR|1x2,关于x的不等式f(x)|x4|的解集为A,当1x2时,f(x)|x4|恒成立由f(x)|x4|得|xa|2.当1x2时
19、,|xa|2恒成立,即2xa2x恒成立实数a的取值范围为1,0点睛:本题主要考查绝对值不等式的解法,集合间的包含关系.18、(1);(2).【解析】(1)由,得,由此能求出曲线C的直角坐标方程;(2)把代入,整理得,由,得,能求出直线l的斜率【详解】(1)曲线C的极坐标方程为,所以.即,即.(2)把直线的参数方程带入得设此方程两根为,易知,而定点M在圆C外,所以,可得,所以直线的斜率为-1.【点睛】本题考查曲线的直角坐标方程的求法,考查直线的斜率的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题19、 (1)见证明
20、;(2) 【解析】(1)利用导数求得函数单调性,可证得;(2)利用假设切点的方式写出切线方程,原问题转化为方程在上有两个解;此时可采用零点存在定理依次判断零点个数,得到范围,也可以先利用分离变量的方式,构造新的函数,然后讨论函数图像,得到范围.【详解】(1)证明:时, 在上递减,在上递增(2)当时,明显不满足要求;当时,设切点为(显然),则有,整理得由题意,要求方程在区间上有两个不同的实数解令 当即时,在上单调递增,在上单调递减或先单调递减再递增而,在区间上有唯一零点,在区间上无零点,所以此时不满足题要求.当时, 在上单调递增不满足在区间上有两个不同的实数解当即时,在上单调递增,在上单调递减,
21、在上单调递增.,在区间上有唯一零点,所以此时不满足题要求.当时,在上单调递减,在上单调递增,当即时,在区间上有唯一零点,此时不满足题要求.当即时,在区间和上各有一个零点设零点为,又这时显然在区间上单调递减,此时满足题目要求.综上所述,的取值范围是(2)解法二:设切点为由解法一的关于的方程在区间内有两解显然不是方程的解故原问题等价于在区间内有两解设,且则,且令,则又,;,故,;,从而,递增,递减令, 由于时,时故,;,而时,时,故在区间内有两解解得:【点睛】本题主要考查导数的几何意义、导数在研究函数中的应用.难点在于将原问题转化为方程根的个数的问题,此时根无法确切的得到求解,解决此类问题的方式是灵活利用零点存在定理,在区间内逐步确定根的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职计算机应用笔试及答案
- 2025年湖南水利厅事业单位考试及答案
- 2025年山东建筑大学社招笔试及答案
- 2025年青岛理工辅导员笔试及答案
- 2025年公务员去事业编单位考试及答案
- 2025年蚌埠一年级报名面试题库及答案
- 2025年药学类事业编考试知识点及答案
- 2025年蜀山区语文面试题库答案
- 2025年大学生政务实践面试题库及答案
- 2025年黑龙江特岗生物面试题库及答案
- 智能网联汽车感知技术与应用 课件 任务3.1 视觉感知技术应用
- 9.个体工商户登记(备案)申请书
- (正式版)DB51∕T 3342-2025 《炉灶用合成液体燃料经营管理规范》
- 江南大学《食品科学与工程》考研真题及答案解析
- 工程咨询行业发展规划方案范文
- 2025年汉语桥的考试题目及答案
- 《TCSUS69-2024智慧水务技术标准》
- 1.1中国的疆域课件-八年级地理上学期湘教版-1
- 收费站消防安全线上培训课件
- 【语文】贵州省贵阳市实验小学小学二年级上册期末试卷
- 妇科单孔腹腔镜手术专家共识(2025版)解读 4
评论
0/150
提交评论