生物分子网络-基本概念_第1页
生物分子网络-基本概念_第2页
生物分子网络-基本概念_第3页
生物分子网络-基本概念_第4页
生物分子网络-基本概念_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、生物分子网络基本概念网络的表示方法顶点(A B C D E F)和顶点之间的边集(AB BC BD CE DE EF)组成的图: (a) 节点和边组成的图;(b) 链表;(c) 邻接矩阵 Distance最短距离 The Distance between two vertices u and v in a graph G is the length of a shortest path between them. When u and v are identical, their distance is defined to be 0. When u and v are unreachable

2、 from each other, their distance is defined to be infinity.“small world” property of short-pathsPeterJaneSarahRalph社会网络:6度分离WWW: 16次点击分离Small wordOne of the phenomenons of real networks is that the average distance through the network from one vertex to another is small compared to the network size.

3、Average Path Length (APL)Small wordAverage distances l for various real networks with size indicated as n介数(Betweenness)介数(Betweenness)介数分为顶点介数和边介数两种 Let st = ts to be the number of shortest paths between two nodes s and t (ss = 1).Let st (v) be the number of shortest paths between two nodes s and t

4、 that goes through node v.Then, the betweenness centrality Cb(v) of any vertex v can be computed as:Clustering CoefficientClustering coefficients take values in the range and it measures the tendency of the network to form highly interconnected regions called Clusters.邻居节点连接个数和所有可能连接个数的比值where d is

5、the degree of v and t is the number of vs trianglesCalculating clustering coefficient of a vertex.vertex v above has d = 6, e = 3 and therefore:Most of My friends know each other!Network modulesER(random) graphsErds和Rnyi in the 1950s and 1960sDegree distribution of a random graph, and an example of

6、such a graph.A random graphFor each pair of vertices (u, v) in the graph: Connect the two vertices with an edge by chance p and do not connect the two vertices by chance 1 p.平均节点度为: d = (N 1)p. 聚类系数为:C = p.Random graphsRandom graphs are a very useful model to compare with the real networks behaviort

7、he ER model differs from real networks in two crucial ways: small network clustering Poisson degree distribution.小世界模型(WS模型)Duncan J. Watts and Steven H. Strogatz :“Collective dynamics of small-world networks”规则网络回顾一下小世界的由来,可以发现它隐含着两层含义:点与点距离短,聚类系数大(朋友与朋友相互认识)两层含义是矛盾的模型的提出WS模型:规则与随机之间The Scale-free

8、model by Barabsi and AlbertPower-law degree distribution in log-log representation.Power-law degree distribution is characterized by a small number of highly connected hubs. Due to the existence of the central hubs, Scale Free networks are highly connected as compared to a random network.层次网络Many highly connected small

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论