甘肃省定西市名校2023学年中考一模数学试题含答案解析_第1页
甘肃省定西市名校2023学年中考一模数学试题含答案解析_第2页
甘肃省定西市名校2023学年中考一模数学试题含答案解析_第3页
甘肃省定西市名校2023学年中考一模数学试题含答案解析_第4页
甘肃省定西市名校2023学年中考一模数学试题含答案解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、甘肃省定西市名校2023学年中考一模数学测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在测试卷卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示,结论:;,其中正确的是有( )A1个B2个C3个D4个2若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y图象上的点,并且y10y2y3,则下列各式中正确的是()Ax1x2x3Bx1x3x2Cx2x1

2、x3Dx2x3x13关于x的不等式组的所有整数解是()A0,1B1,0,1C0,1,2D2,0,1,24下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D1095如图,在矩形ABCD中AB,BC1,将矩形ABCD绕顶点B旋转得到矩形ABCD,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为()ABCD6下列四个图案中,不是轴对称图案的是()ABCD7ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是()A

3、13,5B6.5,3C5,2D6.5,28关于的不等式的解集如图所示,则的取值是A0BCD9甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示下列说法:a=40;甲车维修所用时间为1小时;两车在途中第二次相遇时t的值为5.25;当t=3时,两车相距40千米,其中不正确的个数为()A0个B1个C2个D3

4、个10某班要从9名百米跑成绩各不相同的同学中选4名参加4100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A平均数B中位数C众数D方差11已知a=(+1)2,估计a的值在()A3 和4之间B4和5之间C5和6之间D6和7之间12如图,A、B、C、D四个点均在O上,AOD=50,AODC,则B的度数为()A50 B55 C60 D65二、填空题:(本大题共6个小题,每小题4分,共24分)13方程1的解是_.14如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是_15如图,半径

5、为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是_16计算:(3)0+()1=_17如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90得到线段CE,线段BD绕点B顺时针旋转90得到线段BF,连接BF,则图中阴影部分的面积是_18方程的根是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系中,二次函数yx2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点(1)求二次函数的表达式

6、;(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;(3)在y轴上是否存在点F,使PDF与ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由20(6分)4件同型号的产品中,有1件不合格品和3件合格品从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的

7、值大约是多少?21(6分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值22(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的

8、足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元求A,B两种品牌的足球的单价求该校购买20个A品牌的足球和2个B品牌的足球的总费用23(8分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?24(10分)如图,已知ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧

9、作等边DEB,连接AE,求证:AB平分EAC25(10分)一次函数y34x的图象如图所示,它与二次函数yax2(1)求点C的坐标;(2)设二次函数图象的顶点为D若点D与点C关于x轴对称,且ACD的面积等于3,求此二次函数的关系式;若CDAC,且ACD的面积等于10,求此二次函数的关系式26(12分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示)求羽毛球飞行的路线所在的抛物线的表达式

10、及飞行的最高高度27(12分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;抽查C厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率2023学年模拟测试卷参考答案(含详细解析)一、选择题(

11、本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【答案解析】根据已知的条件,可由AAS判定AEBAFC,进而可根据全等三角形得出的结论来判断各选项是否正确【题目详解】解:如图:在AEB和AFC中,有,AEBAFC;(AAS)FAM=EAN,EAN-MAN=FAM-MAN,即EAM=FAN;(故正确)又E=F=90,AE=AF,EAMFAN;(ASA)EM=FN;(故正确)由AEBAFC知:B=C,AC=AB;又CAB=BAC,ACNABM;(故正确)由于条件不足,无法证得CD=DN;故正确的结论有:;故选C【答案点睛】此题主要考查的是全等三角形

12、的判定和性质,做题时要从最容易,最简单的开始,由易到难2、D【答案解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y10y2y3判断出三点所在的象限,故可得出结论【题目详解】解:反比例函数y中k10,此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,y10y2y3,点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,x2x3x1故选:D【答案点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键3、B【答案解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大

13、中间找、大大小小无解了确定不等式组的解集,据此即可得出答案【题目详解】解不等式2x4,得:x2,解不等式3x51,得:x2,则不等式组的解集为2x2,所以不等式组的整数解为1、0、1,故选:B【答案点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键4、C【答案解析】测试卷解析:第个图形中一共有3个菱形,3=12+2;第个图形中共有7个菱形,7=22+3;第个图形中共有13个菱形,13=32+4;,第n个图形中菱形的个数为:n2+n+1;第个图形中菱形的个数92+9+1=1故选C考点:图形的变化规律.

14、5、A【答案解析】本题首先利用A点恰好落在边CD上,可以求出ACBC1,又因为AB可以得出ABC为等腰直角三角形,即可以得出ABA、DBD的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA和面积DAD【题目详解】先连接BD,首先求得正方形ABCD的面积为,由分析可以求出ABADBD45,即可以求得扇形ABA的面积为,扇形BDD的面积为,面积ADA面积ABCD面积ABC扇形面积ABA;面积DAD扇形面积BDD面积DBA面积BAD,阴影部分面积面积DAD+面积ADA【答案点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.6、B【答案解析】根据轴对称图形的定义逐项识别

15、即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【题目详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【答案点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.7、D【答案解析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,【题目详解】解:如下图,ABC的三条边长分别是5,13,12,且52+122=132,ABC是直角三角形,其斜边为外切圆直径,外切圆半径=6.5,内切圆半径=2,故选D.【答案点睛】

16、本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.8、D【答案解析】首先根据不等式的性质,解出x,由数轴可知,x-1,所以=-1,解出即可;【题目详解】解:不等式,解得x,由数轴可知,所以,解得;故选:【答案点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示9、A【答案解析】解:由函数图象,得a=1203=40,故正确,由题意,得5.53120(402),=2.51.5,=1甲车维修的时间为1小时;故正确,如图:甲车维修的时间是1小时,B(4,120)乙在甲出发2小时后匀速前往B地,比甲早30分

17、钟到达E(5,240)乙行驶的速度为:2403=80,乙返回的时间为:24080=3,F(8,0)设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,解得,y1=80t200,y2=80t+640,当y1=y2时,80t200=80t+640,t=5.2两车在途中第二次相遇时t的值为5.2小时,故弄正确,当t=3时,甲车行的路程为:120km,乙车行的路程为:80(32)=80km,两车相距的路程为:12080=40千米,故正确,故选A10、B【答案解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断【题目详解】要想知道

18、自己是否入选,老师只需公布第五名的成绩,即中位数故选B.11、D【答案解析】首先计算平方,然后再确定的范围,进而可得4+的范围【题目详解】解:a=(7+1+2)=4+,23,64+7,a的值在6和7之间,故选D【答案点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值12、D【答案解析】测试卷分析:连接OC,根据平行可得:ODC=AOD=50,则DOC=80,则AOC=130,根据同弧所对的圆周角等于圆心角度数的一半可得:B=1302=65.考点:圆的基本性质二、填空题:(本大题共6个小题,每小题4分,共24分)13、x4【答案解析】分式方程去分母转化为整式方程,求出整式

19、方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】去分母得:3+2xx1,解得:x4,经检验x4是分式方程的解.【答案点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14、【答案解析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论【题目详解】解:由图可知,黑色方砖4块,共有16块方砖,黑色方砖在整个区域中所占的比值它停在黑色区域的概率是;故答案为【答案点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15、【答案解析】测试卷解析:如图,连接OM交AB于点C,连接OA、OB

20、,由题意知,OMAB,且OC=MC=1,在RTAOC中,OA=2,OC=1,cosAOC=,AC=AOC=60,AB=2AC=2,AOB=2AOC=120,则S弓形ABM=S扇形OAB-SAOB=,S阴影=S半圆-2S弓形ABM=22-2()=2故答案为216、-1【答案解析】先计算0指数幂和负指数幂,再相减.【题目详解】(3)0+()1,=13,=1,故答案是:1【答案点睛】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.17、6【答案解析】过F作FMBE于M,则FME=FMB=90,四边形ABCD是正方形,AB=2,DCB=90,DC=BC=AB=2,DCB=45,由

21、勾股定理得:BD=2,将线段CD绕点C顺时针旋转90得到线段CE,线段BD绕点B顺时针旋转90得到线段BF,DCE=90,BF=BD=2,FBE=90-45=45,BM=FM=2,ME=2,阴影部分的面积=22+42+-=6-.故答案为:6-点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键18、x=2【答案解析】分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解详解:据题意得:2+2x=x2,x22x2=0, (x2)(x+1)=0, x1=2,x2=1 0, x=2故答案

22、为:2点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) yx23x+4;(2)当时,S有最大值;(3)点P的横坐标为2或1或或.【答案解析】(1)将代入,列方程组求出b、c的值即可;(2)连接PD,作轴交于点G,求出直线的解析式为,设,则,当时,S有最大值;(3)过点P作轴,设,则,根据,列出关于x的方程,解之即可【题目详解】解:(1)将、代入, ,二次函数的表达式;(2)连接,作轴交于点,如图所示在中,令y0,得,直线AD的解析式为设,则,当时,S有最大值(3)

23、过点P作轴,设,则,即 ,当点P在y轴右侧时,或,(舍去)或(舍去),当点P在y轴左侧时,x0,或,(舍去),或(舍去), 综上所述,存在点F,使与互余点P的横坐标为或或或【答案点睛】本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键20、(1);(2);(3)x=1【答案解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【题目详解】解:(1)4件同型号的产品中,有1件不合格品,P(不合格品)=

24、;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=;(3)大量重复试验后发现,抽到合格品的频率稳定在0.95,抽到合格品的概率等于0.95, =0.95,解得:x=1【答案点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法21、(1)y=50 x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【答案解析】(1)根据题意可以得到y关于x的函数解析式,本题得以解决;(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决【题目详解】(1)由题意可得,y=1050(30 x)+310

25、0 x50(30 x)=50 x+10500,即y与x的函数关系式为y=50 x+10500;(2)由题意可得,得x,x是整数,y=50 x+10500,当x=12时,y取得最大值,此时,y=5012+10500=9900,30 x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【答案点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答22、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1【答案解析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个

26、B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可【题目详解】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:答:一个A品牌的足球需40元,则一个B品牌的足球需100元;(2)依题意得:2040+2100=1(元)答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元考点:二元一次方程组的应用23、(1)y=0.8x60(0 x200)(2)159份【答案解析】解:(1)y=(10.5)x(0.50.2)(200 x)=0.8x60(0 x200)(2)根据题意得:30(0.8x

27、60)2000,解得x小丁每天至少要买159份报纸才能保证每月收入不低于2000元(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(10.5)x(0.50.2)(200 x)即y=0.8x60,其中0 x200且x为整数(2)因为每月以30天计,根据题意可得30(0.8x60)2000,解之求解即可24、详见解析【答案解析】由等边三角形的性质得出AB=BC,BD=BE,BAC=BCA=ABC=DBE=60,证出ABE=CBD,证明ABECBD(S

28、AS),得出BAE=BCD=60,得出BAE=BAC,即可得出结论【题目详解】证明:ABC,DEB都是等边三角形,ABBC,BDBE,BACBCAABCDBE60,ABCABDDBEABD,即ABECBD,在ABE和CBD中,AB=CB,ABE=CBD,BE=BD,,ABECBD(SAS),BAEBCD60,BAEBAC,AB平分EAC【答案点睛】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键25、(1)点C(1,32);(1)y38x132x; y12x【答案解析】测试卷分析:(1)求得二次函数yax14axc对称轴为直线x1,

29、把x1代入y34x求得y=32,即可得点C的坐标;(1)根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,34m) ,根据SACD3即可求得m的值,即求得点A的坐标,把A.D的坐标代入yax14axc得方程组,解得a、c的值即可得二次函数的表达式.设A(m,34m)(m1),过点A作AECD于E,则AE1m,CE根据勾股定理用m表示出AC的长,根据ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a0,则点D在点C下方,求点D的坐标;第二种情况,若a0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入yax14axc即可求得函数表达式.测试卷解析:(1)yax14axca(x1)14ac二次函数图像

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论