初三数学教案设计2022最新完整版10篇_第1页
初三数学教案设计2022最新完整版10篇_第2页
初三数学教案设计2022最新完整版10篇_第3页
初三数学教案设计2022最新完整版10篇_第4页
初三数学教案设计2022最新完整版10篇_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初三数学教案设计2022最新完整版10篇 初三数学教案设计2022最新完整版篇1 教学目标 (一)教学知识点 1.能够利用二次函数的图象求一元二次方程的近似根. 2.进一步进展估算能力. (二)能力训练要求 1.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验. 2.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想. (三)情感与价值观要求 通过利用二次函数的图象估量一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力. 教学重点 1.经历探索二次函数与一元二次方程的关系的过程,体会方程与

2、函数之间的联系. 2.能够利用二次函数的图象求一元二次方程的近似根. 教学难点 利用二次函数的图象求一元二次方程的近似根. 教学方法 学生合作沟通学习法. 教具准备 投影片三张 第一张:(记作2.8.2A) 第二张:(记作2.8.2B) 第三张:(记作2.8.2C) 教学过程 .创设问题情境,引入新课 师上节课我们学习了二次函数y=ax2+bx+c(a0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地

3、求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估量一元二次方程的根. 初三数学教案设计2022最新完整版篇2 教学目标 1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。 2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k0)的方程。 3、引导学生体会“降次”化归的思路。 重点难点 重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k0)的方程。 难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。 教学过程 (一)复习引入 1、判断下列说法是否正确 (1)若p=1,q=1,则pq=l( ),若pq=l,则p=

4、1,q=1( ); (2)若p=0,g=0,则pq=0( ),若pq=0,则p=0或q=0( ); (3)若x+3=0或x-6=0,则(x+3)(x-6)=0( ), 若(x+3)(x-6)=0,则x+3=0或x-6=0( ); (4)若x+3=或x-6=2,则(x+3)(x-6)=1( ), 若(x+3)(x-6)=1,则x+3=或x-6=2( )。 答案:(1),。(2),。(3),。(4),。 2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=; 若x2=2,则x=。 答案:平方根,2,。 (二)创设情境 前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本

5、思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗? 引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。 给出1.1节问题一中的方程:(35-2x)2-900=0。 问:怎样将这个方程“降次”为一元一次方程? (三)探究新知 让学生对上述问题展开讨论,老师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。 (四)讲解例题 展示课本P.7例1,例2。 按课

6、本方式引导学生用因式分解法和直接开平方法解一元二次方程。 引导同学们小结:对于形如(ax+b)2-k=0(k0)的方程,既可用因式分解法解,又可用直接开平方法解。 因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。 直接开平方法的步骤是:把方程变形成(ax+b)2=k(k0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。 注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积

7、的一元二次方程; (2)直接开平方法适用于形如(ax+b)2=k(k0)的方程,由于负数没有平方根,所以规定k0,当k0时,方程无实数解。 (五)应用新知 课本P.8,练习。 (六)课堂小结 1、解一元二次方程的基本思路是什么? 2、通过“降次”,把元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么? 3、因式分解法和直接开平方法适用于解什么形式的一元二次方程? (七)思考与拓展 不解方程,你能说出下列方程根的情况吗? (1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。 答案: (1)有两个不相等的实数根; (2)和(4)没有实数根;

8、(3)有两个相等的实数根 通过解答这个问题,使学生明确一元二次方程的解有三种情况。 布置作业 初三数学教案设计2022最新完整版篇3 教学目标 1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。 2、会用配方法解二次项系数为1的一元二次方程。 重点难点 重点:会用配方法解二次项系数为1的一元二次方程。 难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。 教学过程 (一)复习引入 1、a22ab+b2=? 2、用两种方法解方程(x+3)2-5=0。 如何解方程x2+6x+4=0呢? (二)创设情境 如何解方程x2+6

9、x+4=0呢? (三)探究新知 1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。 2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本P.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方.将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。 (四)讲解例题 例1(课本P.11,例5) 解(

10、1)x2+2x-3(观察二次项系数是否为“l”) =x2+2x+12-12-3(在一次项和二次项之后加上一次项系数一半的平方,再减去这个数,使它与原式相等) =(x+1)2-4。(使含未知数的项在一个完全平方式里) 用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。 例2引导学生完成P.11P.12例6的填空。 (五)应用新知 1、课本P.12,练习。 2、学生相互沟通解题阅历。 (六)课堂小结 1、怎样将二次项系数为“1”的一元二次方程配方? 2、用配方法解一元二次方程的基本步骤是什么? (七)思考与拓展 解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x

11、2-x-1=0。 说一说一元二次方程解的情况。 解(1)将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。 (2)用配方法可解得x1=x2=-。 (3)用配方法可解得x1=,x2= 一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。 课后作业 课本习题 初三数学教案设计2022最新完整版篇4 一、教学目标 1.知识与技能 (1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释; 2.过程与方法 通过猜想、探讨构建一元二次方程模型. 3.情感、态度与价

12、值观 (1)通过自主、探究性学习,使学生养成良好的思维习惯; (2)通过对方程解的合理性解释,培育学习实事求是的作风. 二、教学重点难点 1.重点 找出问题中的数量关系; 2.难点 找等量关系并列出相应方程. 三、教材分析 本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都制造一些探索沟通的机会,让学生了解数学知识的进展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型. 四、教学过程与互动设计 (一)温故知新 1.请同学们回忆并回答解一元一次方程应用题的一般步骤: 第一步:弄清题意和题

13、目中的已知数、未知数,用字母表示题目中的一个未知数; 第二步:找出能够表示应用题全部含义的相等关系; 第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程; 第四步:解这个方程,求出未知数的值; 第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称.) 2.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样. 我们先来解一些具体的题目,然后总结一些规律或应注意事项. (二)创设情景,导入新课 1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米. 若梯子的顶端下滑1米,那么 (1)猜一猜,底端也将滑动 1米吗? (2)列出底端滑动

14、距离所满足的方程. 【答案】 底端将滑动1米多 提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际. 2.【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)? (1)学生讨论:怎样计算月利润增长百分率? 【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润 例8 某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率. 分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价

15、为原来的56(1-x)的(1-x)倍. 解:设平均降价百分率为x,根据题意,得56(1-x)2=31.5 解这个方程,得x 1 = 1.75,x2=0.25 因为降价的百分率不可能大于1,所以x1 = 1.75不符合题意,符合题意要求的是x=0.25=25% 答每次降价百分率为25%. 【跟踪练习】 某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%). 【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:整体地,系统地审清问题;把握问题中的等量关系;正确求解方程并检验解的合理性. (三)应用迁移,巩固提高 1.某商品原价200元,连续

16、两次降价a%后售价为148元,下列所列方程正确的是( ) A)200(1+a%)2=148 (B)200(1-a%)2=148 (C)200(1-2a%)=148 (D)200(1-a2%)=148 2.为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数? (四)达标测试 1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( ) A、100(1+x)2=800 B、100+1002x=800 C、100+1003x=800 D、1001+(1+x)+(1+x)2=800

17、 2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程.,一元二次方程的.解法 3.某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少? 4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%) 5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数 五、课堂小结 初三数学教案设计2022最新完整版篇5 教学目标 1、理解用

18、配方法解一元二次方程的基本步骤。 2、会用配方法解二次项系数为1的一元二次方程。 3、进一步体会化归的思想方法。 重点难点 重点:会用配方法解一元二次方程. 难点:使一元二次方程中含未知数的项在一个完全平方式里。 教学过程 (一)复习引入 1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”. 2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么? (二)创设情境 现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解? 怎样解这类方程:2x2-4x-6=0 (三)探究新知 让学生议一议解方程2x2-4x-6=0

19、的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。 (四)讲解例题 1、展示课本P.14例8,按课本方式讲解。 2、引导学生完成课本P.14例9的填空。 3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。 (五)应用新知 课本P.15,练习。 (六)课堂小结 1、用配方法解一元二次方程的基本步骤是什么? 2、

20、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要常常用到。 3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。 4、按图1l的框图小结前面所学解一元二次方程的算法。 (七)思考与拓展 不解方程,只通过配方判定下列方程解的情况。 (1)4x2+4x+1=0;(2)x2-2x-5=0; (3)x2+2x-5=0; 解把各方程分别配方得 (1)(x+)2=0; (2)(x-1)2=6; (3)(x-1)2=-4 由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根

21、,方程(3)没有实数根。 点评: 通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。 初三数学教案设计2022最新完整版篇6 一、指导思想: 初三数学是以党和国家的教育教学方针为指导,根据九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的进展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培育学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培育学生的数学创新意识、良好个性品质以及初步的唯物主义观。 二、教学内容: 本学期所教初三数学包括第

22、一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。 四、教学目的: 在新课方面通过讲授证明(二)和证明(三)的有关知识,使学生经历探索、猜想、证明的过程,进一步进展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在视图与投影这一章通过具

23、体活动,积累数学活动阅历,进一步增强学生的动手能力进展学生的空间思维。在频率与概率这一章让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。 在一元二次方程和反比例函数这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培育学生的思维能力和应变能力。 五、教学重点、难点 本册教材包括几几何何部分证明(二),证明(三),视图与投影。代娄部分一元二次方程, 反比例函数。以及与统计有关的频率与概率。证明(二),证明(三)的重点是1、要求学生掌握证明的基本

24、要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜想、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。视图与投影和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。一元二次方程,反比例函数的重点是 1、掌握一元二次方程的多种解法; 2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。 难占是 1、会运用方程和函数建立数学模型,鼓舞学生进行探索和沟通,提倡解决问题策略的多样

25、化。频率与概率的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。 六、教学措施: 针对上述情况,我计划在即将开始的学年教学工作中实行以下几点措施: 1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。 2、教学过程中尽量实行多鼓舞、多引导、少批评的教育方法。 3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推动。 4、新课教学中涉及到旧知识时,对其作相应的复习回

26、顾。 5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。 初三数学教案设计2022最新完整版篇7 一、学生知识状况分析 学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义; 学生活动阅历基础:在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于

27、学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的阅历,具备了一定的合作与沟通的能力。 二、教学任务分析 教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1且一次项系数为偶数的一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课配方法内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象

28、出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。 三、教学过程分析 本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。 四、教学反思 1、 制造性地使用教材 教材只是为老师提供最基本的教学素材,老师完全可以根据学生的实际情况进行适当调整。学生在初一、初二已经学过完全平方公式和如何对一个正数进行开方运算,而且普遍掌握较好,所以本节课从这两个方面入手,利用几个简单的实际问题逐步引入配方法。教

29、学中将难点放在探索如何配方上,重点放在配方法的应用上。本节课老师安排了三个例题,通过前两个例题规范用配方法解一元二次方程的过程,帮助学生充分掌握用配方法解一元二次方程的技巧,同时本节课制造性地使用教材,把配方法(3)中的一个是设计方案问题改编成一个实际应用问题,让学生体会到了方程在实际问题中的应用,感受到了数学的实际价值。培育了学生分析问题,解决问题的能力。 2、 相信学生并为学生提供充分展示自己的机会 课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成乐观主动的求知态度。本节课多次组织学生合作沟通,通过小组合作,为学生提供展

30、示自己聪慧才智的机会,并且在此过程中老师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。 3、注意改进的方面 在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。老师应对小组讨论给予适当的指导,包括知识的启发引导、学生沟通合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。 初三数学教案设计2022最新完整版篇8 一、本学期教材分析,学生现状分析 本学期教学内容是华师大版九班级上教材,内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜

31、想提供了可能。观察、思考、实验、想一想、试一试、做一做等,给学生留有思考的空间,让学生能更好地自主学习。因此对每一章的教学都要体现师生交往、互动、共同进展的过程。要求老师成为学生数学学习的组织者和引导者,从学生的生活阅历和已有的知识背景出发,在活动中激发学生的学习潜能,促使学生在自主探索与合作沟通的过程中真正理解和掌握基本数学知识、技能、思想、方法,提高解决问题的能力。开学第一周我对学生的观察和了解中发现少部分学生基础还可以,而大部分学生基础和能力比较差,甚至加减乘除运算都不过关,更不用提解决实际问题了。所以一定要想方设法,鼓舞他们增强信心,改变现状。在扎实基础上提高他们解题的基本技能和技巧。

32、 二、确立本学期的教学目标及实施目标的具体做法。 本学期的教学目标是九班级(上)的五章内容,力求学生掌握基础的同时提高他们的动手操的能力,概括的能力,类比猜想的能力和自主学习的能力。在初中的数学教学实践中,经常发现相当一部分学生一开始不适应中学老师的教法,出现消化不良的症状,究其原因,就学生方面主要有三点: 一是学习态度不够端正; 二是智能上存在差异; 三是学习方法不科学。 我以为施教之功,贵在引导,重在转化,妙在开窍。因此为防止过早出现两极分化,我准备具体从以下几方面入手: (一)掌握学生心理特征,激发他们学习数学的乐观性。 学生由小学进入中学,心理上发生了较大的变化,开始要求“独立自主”,

33、但学生环境的更换并不等于他们已经具备了中学生的诸多能力。因此对学习道路上的困难估量不足。鉴于这些心理特征,老师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接爱好,数学第一章内容的正确把握能较好地做到这些。同时在言行上,老师要切忌伤害学生的自尊心。 (二)努力提高课堂45分钟效率 (1)在老师这方面,首先做到要通读教材,驾奴教材,仔细备课,仔细备学生,仔细备教法,对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的

34、达标程度老师更要掌握。同时作业也要分层次进行,使优生吃饱,差生吃好。 (2)重视学生能力的培育 九班级的数学是培育学生运算能力,进展思维能力和综合运用知识解决实际问题的能力,从而培育学生的创新意识。根据当前素质教育和新课改的的精神,在教学中我着重对学生进行上述几方面能力的培育。充分发挥学生的主体作用,尽可能地把学生的潜能全部挖掘出来。 (三)加强对学生学法指导 进入中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我要求学生养成先复习,后做作业的好习惯

35、。课后注意及时复习巩固以及常常复习巩固,能使学过的知识达到永久记忆,遗忘缓慢。 三、教学讨论计划 课堂教学与数学改革是相铺相成的,做好教学讨论能更好地为课堂教学服务。本学期将乐观参加学校和备课组的各项教研活动,撰写“教学随笔”和“教学反思”。本人决定在第十一周开一堂公开课,与学校同组的老师共同探讨教学。 四、继续教育计划: 继续教育是提高老师基本技能的重要途径。本学期我乐观参加校内外组织的各项继续教育,努力提升教育教学水平。 1、通过网络继续教育培训,学习新教育理念,不断完善教育教学方式。 2、阅读有关新课程的书籍,做好读书笔记;总之,本学期的教学工作任务还有很多,需要在今后的实际工作中进一步

36、补充和完善。 初三数学教案设计2022最新完整版篇9 一、学情分析: 新学期,根据九班级合班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和进展意识以及创新意识,鼓舞大家在新学期,获得更大的进步,取得更大的进展。 二、教学内容 本学期所教九班级数学包括第二十一章二次根式,第二十二章一元二次方程,第二十三章旋转,第二十四章圆。第二十五章概率初步。代数三章,几何两章。而且本学期要授完下册第二十七章内容。 三、教学目标: 本学期的主要教学任务目标: (1

37、)根据学情,调整好教学进度,优化学习方法,激活知识积累。 (2)形成知识网络,解决实际问题。 (3)强化规范训练,提高应考能力。 (4)关注学生特长需求,做好学生心理疏导。 具体的说,教育学生掌握基础知识与基本技能,培育学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的爱好,逐步培育学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培育学生应用数学知识解决问题的能力。 知识技能目标: 掌握

38、二次根式的概念、性质及计算;会解一元二次方程;理解旋转的.基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。 过程方法目标: 培育学生的观察、探究、推理、归纳的能力,进展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。 态度情感目标: 进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。 第一学期九班级数学教学进度表 周次时间教学内容备注 第一周9月1日9月6日第二十一章二次根式21.1 第二周9月7日9月13日21.221.3 第三周9月14日9月20日21.3数学活动小结 第四周9月21日9月27日第二十二章一元一次方程22.

39、122.2 第五周9月28日10月4日22.210月1日7日放假 第六周10月5日10月11日22.3 第七周10月12日10月18日第二十三章旋转23.123.2 第八周10月19日10月25日23.3课题学习数学活动小结 第九周10月26日11月1日第二十四章圆24.124.226日重阳节 第十周11月2日11月8日24.324.4数学活动小结 第十一周11月9日11月15日期中质量检测 第十一周11月16日11月22日试卷讲评 第十二周11月23日11月29日第二十五章概率初步25.1 第十三周11月30日12月6日25.2 第十七周12月28日1月3日26.31月1日3日放假 第十八周

40、1月4日1月10日第二十七章相似27.127.2 第十九周1月11日17日27.227.3 第二十周1月18日1月24日期末复习 第二十一周1月25日1月31日期末质量检测 初三数学教案设计2022最新完整版篇10 九班级数学教学计划上册初三学年下学期的复习教学,是整合升华学科知识,培育提高应试能力的重要环节。复习教学工作的好坏,直接关系到中考的成功与否。为保障毕业班复习教学取得良好成效, 以复习课型模式讨论,提高课堂效益为重点,面对全体学生,优生优培,中程生提高,困难生稳中求进;依纲据本,抓住重点,突破难点,强化薄弱环节;加强教情,学情讨论,强化中考的讨论,大面积提高教学成绩,促进初三复习教

41、学工作又好又快进展。 1,提高认识,全力以赴,进入冲刺状态 首先,每位初三老师要充分认识复习教学的重要性,增强责任重于泰山,质量压倒一切的责任感,树立仔细就是水平,负责就是能力的观念,发扬关键时刻冲得上豁得出的拼搏精神,全力以赴,聚精会神,专心致志,真真正正进入冲刺状态,苦战100天,用成绩说话,坚决夺取今年中考的全面胜利。其次,全体老师要以毕业班工作的大局为重,服从安排,听从指挥,不管是级部的安排,还是各备课组的布置,都要扎扎实实贯彻执行,将落实进行到底。纪律严明,政令畅通,是工作胜利的保障。要彻底杜绝有令不行,有禁不止的以自我为中心的个人主义的不良作风。第三,全体老师要增强精诚合作的团队意

42、识,实实在在搞好团结。团结出力量,团结出成绩。在初三这个集体内坚决反对那种意气用事,挑拨离间的行为。有意见,有矛盾当面说开,大事讲原则,小事讲风格;有困难,有问题,大家齐帮助,共协商,形成一个和谐,融洽的工作氛围。 2,周密计划,科学安排 各学科现已完成教学进度,学期开始即转入总复习阶段。总体时间安排是3月上旬4月中旬45天左右为第一轮复习,以课本知识的疏理,归纳,总结为主;备课组自编讲学稿一套。4月下旬5月中旬30天左右,以课外拓展为主,以专题复习为主。5月下旬6月中考前,主要是整合升华阶段,综合模拟为主,训练应试能力与技巧。 三轮复习的具体思路是: 一轮复习本着全面,扎实,系统,灵活的指导

43、思想,一是做到四个坚持,即:坚持把复习的重点放在基础知识上;坚持补弱纠偏,重在一轮;坚持改进课堂教学,提高复习效率;坚持面对全体,实现大面积丰收。二是落实四个为主,即以基础知识的复习为主,以低中档题目的训练为主,以学科内综合为主,以小综合训练为主。三是处理好三个关系,即:基础和能力的关系(强化基础,提升能力),扬长与补弱的关系,复习知识与做题的关系(做题的目的是回扣知识提升能力)。四是确保两项常规的落实,即老师的教学常规和学生学习常规的落实。 二轮复习本着巩固,完善,综合,提高的指导思想,实行专题复习加综合训练的复习模式,突出五个强化,即强化时间观念;强化讨论:重点讨论两纲(教学大纲和考试说明

44、),两题(综合题和能力题),两课(复习课和讲评课),两生(优生和困难生),两法(教学方法和学习方法),两情(教情和学情);强化训练:立足三个讲好,增强五个针对性。三个讲好:讲好专题,讲好试卷,讲好练习;五个针对性:针对目标生讲,针对中考新模式指向讲,针对二轮复习能力要求讲,针对反馈的问题讲,针对典型题目讲;强化应试技巧与规范化,最大限度降低非知识性丢分;强化学生心理调控,加强心理辅导,使学生以一种乐观的心态复习,以必胜的信念参加中考。 三轮复习以回扣,模拟,完善,调整为指导思想。抓回扣做到四化要求,即:回扣教材提纲化,回扣基础系统化,回扣形式习题化,回扣时间具体化;抓模拟做到四性要求,即试题体现基础性,考试体现模拟性,答题体现规范性,讲解体现系统性。逐步达到完善知识体系,适应考试要求,调整教与学的方向,升华应试技能的目的。 3,细致讨论教材,考试说明,中考试题,做到有的放矢。 各任课老师要加强对初中学段本学科教材的通研。教材是中考命题的依托,一方面要熟悉教材的整体编排体系,编写体例,重点难点,另一方面又要熟悉每个单元的教学目标,知识结构,知识点和能力训练点,教法和学法等。要在通研教材的基础上,把教材重新划分若干个大单元,以利系统复习。 4,组织好大型考试,搞好质量分析 级部组织的综合拉练,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论