初二数学优秀教学教案案例_第1页
初二数学优秀教学教案案例_第2页
初二数学优秀教学教案案例_第3页
初二数学优秀教学教案案例_第4页
初二数学优秀教学教案案例_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初二数学优秀教学教案案例 初二数学优秀教学教案案例篇1 教学目标: 1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。 2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。 教学重点: 算术平方根的概念。 教学难点: 根据算术平方根的概念正确求出非负数的算术平方根。 教学过程 一、情境导入 请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很兴奋,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题? 这就要用

2、到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。 二、导入新课: 1、提出问题:(书P68页的问题) 你是怎样算出画框的边长等于5dm的呢?(学生思考并沟通解法) 这个问题相当于在等式扩=25中求出正数x的值。 一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0。 也就是,在等式 =a (x0)中,规定x =。 2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来. 3、 想一想:下列式子表示什么意思?你能求出它们的值吗? 建

3、议:求值时,要根据算术平方根的意义,写出应该满足的关系式,然后根据算术平方根的记法写出对应的值。例如 表示25的算术平方根。 4、例1 求下列各数的算术平方根: (1)100;(2)1;(3) ;(4)0.0001 三、练习 P69练习 1、2 四、探究:(课本第69页) 怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 方法1:课本中的方法,略; 方法2: 可还有其他方法,鼓舞学生探究。 问题:这个大正方形的边长应该是多少呢? 大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与

4、大正方形的边长的大小)它的近似值我们将在下节课探究。 五、小结: 1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根 六、课外作业: P75习题13、1活动第1、2、3题 初二数学优秀教学教案案例篇2 知识目标: 理解函数的概念,能准确识别出函数关系中的自变量和函数 能力目标: 会用变化的量描述事物 情感目标: 回用运动的观点观察事物,分析事物 重点: 函数的概念 难点: 函数的概念 教学媒体: 多媒体电脑,计算器 教学说明: 注意区分函数与非函数的关系,学会确定自变量的取值范围 教学设计: 引入: 信息1:小明在14岁生日时,看到他爸爸为他记录的以

5、前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗? 新课: 问题:(1)如图是某日的气温变化图。 这张图告诉我们哪些信息? 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的? (2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数: 这表告诉我们哪些信息? 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗? 一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的

6、函数值。 范例:例1 判断下列变量之间是不是函数关系: (5) 长方形的宽一定时,其长与面积; (6) 等腰三角形的底边长与面积; (7) 某人的年龄与身高; 活动1:阅读教材7页观察后完成教材8页探究,利用计算器发现变量和函数的关系 思考:自变量是否可以任意取值 例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。 (1) 写出表示y与x的函数关系式。 (2) 指出自变量x的取值范围。 (3) 汽车行驶200km时,油箱中还有多少汽油? 解:(1)y=50-0.1x (2)0500 (3)x=2

7、00,y=30 活动2:练习教材9页练习 小结:(1)函数概念 (2)自变量,函数值 (3)自变量的取值范围确定 作业:18页:2,3,4题 初二数学优秀教学教案案例篇3 一、教材分析: 正方形这节课是九年义务教育人教版数学教材八班级下册第十九章第二节的内容。纵观整个初中教材,正方形是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动阅历的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。 本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的

8、内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。 (一)知识目标: 1、要求学生掌握正方形的概念及性质; 2、能正确运用正方形的性质进行简单的计算、推理、论证; (二)能力目标: 1、通过本节课培育学生观察、动手、探究、分析、归纳、总结等能力; 2、进展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法; (三)情感目标: 1、让学生树立科学、严谨、理论联系实际的良好学风; 2、培育学生互相帮助、团结协作、相互讨论的团队精神; 3、通过正方形图形的完美性,培育学生品格的完美性。 二、学生分析: 该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本

9、节课的教学过程中,特意设计了让学生自己组织语言培育说理能力,让学生们能逐步提高。 三、教法分析: 针对本节课的特点,采纳实践-观察-总结归纳-运用为主线的教学方法。 通过学生动手,实行几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。 四、学法分析: 本节课重点是从培育学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。 五、教学程序: 第一环节:相关知识回顾 以提问的形式复习了

10、平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。 第二环节:新课讲解通过学生们的发现引出课题“正方形” 1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四

11、边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。 2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等; 定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。 以上是对正方形定义和性质的学习,之后是进行例题讲解。 3、例题讲解:求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。此题是文字证明题,由学生们分组相互探讨,共同讨论此题的已知、求证部分,然后由小组派代表阐述证明过程,老

12、师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。从而培育他们语言表达能力,让学生的个性得到充分的展示 4、课堂练习:第一部分采纳三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。 第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。 5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质

13、,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。 6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。 初二数学优秀教学教案案例篇4 第三十四学时:14.2.1平方差公式 一、学习目标: 1.经历探索平方差公式的过程。 2.会推导平方差公式,并能运用公式进行简单的运算。 二、重点难点 重点:平方差公式的推导和应用; 难点:理解平方差公式的结构特征,灵活应用平方差公式。 三、合作学习 你能用简便方法计算下列各题吗? (1)20_1999(2)9981002 导入新课:计算下列多项式的积. (1)

14、(x+1)(x1); (2)(m+2)(m2) (3)(2x+1)(2x1); (4)(x+5y)(x5y)。 结论:两个数的和与这两个数的差的积,等于这两个数的平方差。 即:(a+b)(ab)=a2b2 四、精讲精练 例1:运用平方差公式计算: (1)(3x+2)(3x2); (2)(b+2a)(2ab); (3)(x+2y)(x2y)。 例2:计算: (1)10298; (2)(y+2)(y2)(y1)(y+5)。 随堂练习 计算: (1)(a+b)(b+a); (2)(ab)(ab); (3)(3a+2b)(3a2b); (4)(a5b2)(a5+b2); (5)(a+2b+2c)(a+

15、2b2c); (6)(ab)(a+b)(a2+b2)。 五、小结 (a+b)(ab)=a2b2 初二数学优秀教学教案案例篇5 一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。 根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的讨论推向了高级阶段,运用韦达定理可以进一步讨论数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习讨论也是作用非凡。 通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。 通过韦达定理的教学,可以培育学生的创新意识、创新精神和综合分析数学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论