LED照明和太阳能电池充电技术问题详解_第1页
LED照明和太阳能电池充电技术问题详解_第2页
LED照明和太阳能电池充电技术问题详解_第3页
LED照明和太阳能电池充电技术问题详解_第4页
LED照明和太阳能电池充电技术问题详解_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、LED照明和太阳能电池充电技术问题详解作为一种既环保又节能的解决方案, HYPERLINK /soft/70/2010/2010101392151.html LED照明在汽车、家庭、办公楼、酒店、机场和路灯等广泛的应用场合找到了个人的用武之地。但它的大规模商用除了还要克服成本障碍以外,还需要解决调光闪烁、散热、色彩均匀性等技术难题。此外,对清洁能源的关注和 HYPERLINK /soft/35/2010/2010051574881.html 太阳能电池板成本的下降,也带动了当前业内的太阳能商用热潮。为了帮助读者更快更好地把握这一商机,本刊特别邀请到了Linear电源专家Tony Armstro

2、ng来分享他的独到见解。问:采用PWM或模拟调光时,如何消除LED的光闪烁现象?答:面对高功率、高亮度LED普及率的日益提高,电子照明设计师必须提供高效、准确和简单的LED驱动解决方案。由于高功率照明灯(如汽车前照灯或大型LCD显示器背光源)实现了与商用化串联LED阵列的互换性,因而使得此项任务变得更加困难。传统上,利用准确的电流来驱动高功率LED串与实现简单性和高效率这两者之间是相抵触的,通常需要采用某种效率低下的线性稳压器方案或更加精细复杂的多IC开关稳压器配置。此外,力保每个LED具备均匀的亮度且不产生任何闪烁也成为了主要的设计障碍。人们普遍接受的LED亮度控制方法有两种,即模拟调光和P

3、WM数字调光。当采用模拟调光时,LED电流的调节范围在某个最大值至该最大值的约10%之间(10:1调光范围)。由于LED的色谱与电流有关,因此这种方法并不适合于某些应用。然而,PWM数字调光方式则是以某种快至足以掩盖视觉闪烁的速率(通常高于100kHz)在零电流和最大LED电流之间进行切换。该占空比改变了有效平均电流,从而实现了高达3000:1的调光范围(仅受限于最小占空比)。由于LED电流要么处于最大值,要么被关断,所以该方法还具备能够杜绝发生LED色偏的优点,而在采用模拟调光时这种LED色偏现象是很常见的。问:大功率LED照明的散热问题应该如何解决?答:两种用量最大、功率最高的LED照明应

4、用是大屏幕LCD TV显示器的背面照明和汽车前照灯。您不妨看看Lexus(雷克萨斯)、Audi(奥迪)、甚至GM(通用)公司的Cadillac Escalade所使用的标准LED汽车前照灯。所有这些汽车的总体照明结构均很相似。每个汽车前照灯包括5种专为各种照明要求而优化的LED供电光束,包括:近光灯、远光灯、转弯辅助灯、昼间行驶灯和转向信号指示灯。标准LED照明光束通常将需要35W至50W的供电功率。这或许看似不是很多的功率;然而,LED提供的亮度却达到了HID卤素灯的10倍,因此LED的光输出就相当于500W的卤素灯。远光灯所需要的功率一般与标准照明光束相同或略为高一点,而转弯辅助灯、昼间行

5、驶灯和转向信号指示灯所需要的功率则较低。不过,该总体汽车前照灯会消耗200W以上的电能,因而有可能产生重大的热功率耗散问题。这确实不是什么好事,因为随着工作温度的升高,LED的光输出和工作寿命将快速降低。处理该散热问题方法有很多种。一种是增加强量的散热器以把热量从照明灯移走。然而,这会产生另一组问题,包括因为散热材料的使用而导致的成本和重量的增加。解决这一问题最有效的方法是采用一个具极高效率的驱动器(效率93%) 来最大限度地减少LED驱动电路的热耗散。这并不像听起来那么困难,原因是一个50W的远光灯通常可由14个串联的1A LED组成。由于整个温度范围内的正向电压降约为每个LED 4V,因此

6、升压转换器LED驱动器拓扑结构能够以93%的效率将12V的标称电池电压提升至刚好超过56V。这使得仅需耗散3.5W的功率,对于该功率耗散值,在安装了LED汽车前照灯的印刷电路板内布设低等级的铜散热器便可轻松地满足要求。问:用太阳能电池板采集来的电能对蓄电池进行充电时,关键的设计挑战有哪些?答:作为在商业和住宅环境中均具实用性的一种发电方法而言,太阳能电池板已经被人们所广泛接受。然而,尽管在技术方面取得了进步,太阳能电池板的造价仍然很昂贵。这种高昂的成本有特别大部分来自于电池板本身,这里,电池板的尺寸 (因而也包括其成本) 将随着所需输出功率的增加而增加。因此,为了造就外形尺寸最小、成本效益性最

7、佳的解决方案,最大限度地提升电池板性能是很重要的。一般而言,太阳能电池板所获取的能量用于给电池充电,电池的储能反过来将在没有阳光照射的情况下为终端应用电路的操作提供支持。如欲实现太阳能电池充电器的最佳设计,则必需对太阳能电池板的特性有所了解。首先,由于具备特别大的结合区,因此太阳能电池板会发生泄漏,在黑暗条件下电池将通过电池板放电。而且,每块太阳能电池板都拥有一个具最大功率点的特征IV曲线,所以,当负载特性与电池板特性不相匹配时,能量提取将有所减少。理想的情况是:电池板将在最大功率点上被持续加载,以充分地利用可用的太阳能,并由此最大限度地缩减电池板成本。一般情况下,可以采用一个与电池板相串联的

8、肖特基二极管来解决电池板的泄漏问题。反向泄漏被减小至一个很低的数值;然而,肖特基二极管的正向电压降 (它在高电流条件下会消耗大量的功率) 仍然会造成能量损失。因此,需要采用昂贵的散热器和精细的布局来把肖特基二极管保持于低温状态。解决该功率耗散问题的一种更加有效方法是用一个基于MOSFET的理想二极管来替代肖特基二极管。这将把正向电压降减小到低至20mV,从而显著地减少功耗,同时降低散热布局的复杂性、外形尺寸和成本。幸运的是,由于已经有一些IC供应商制造出了具备这种规格的理想二极管 (比如:由凌力尔特公司提供的LTC4412),因此上述目标得以轻松实现。不过,有两个问题依旧存在,即:“至满充电电

9、池的浮动电压控制”和“在最佳发电点给电池板加载”。这些问题常常可以通过采用一个开关模式充电器和一个高效率降压型稳压器来加以解决。凌力尔特已经开发出了这样一款电路,它由LTC1625 No RESNSE(无检测电阻器)同步降压型控制器、LTC1541微功率运算放大器、比较器和基准、以及LTC4412理想二极管组成。下面给出了该电路以供参考:图1中的电路被置于太阳能电池板和电池之间,用于调节电池浮动电压。基于LTC1541的附加控制环路强制充电器在最大电池板功率点上运作。这种效率的提升缩减了所需要的电池板尺寸,因而降低了总体解决方案的成本。当电池板峰值电源电压和电池电压之间存在失配时,这款电路的重

10、要优点表现得极为突出。图1:峰值功率跟踪降压充电器最大限度地提高了效率问:Linear提供了哪些独特的解决方案来解决以上设计挑战?答:为了满足LED驱动以及太阳能电池板电池充电器的设计需要,凌力尔特提供了各种各样的产品。LT3595、LT3518和LT3755便是其中一些产品。此类产品和LED驱动器IC的一个实例是凌力尔特的LT3595降压模式LED驱动器,它具备16个单独的通道,每个通道能够从高达45V的输入来驱动一个由多达10个50mA LED所组成的LED串。每个通道可用于驱动10个串联LED以提供局部调光。于是,每个LT3595都能够驱动多达160个50mA白光LED。一台46英寸LC

11、D TV将需要为每部HDTV配用约10个LT3595。它的16个通道均可以独立控制,并具备一个能够提供高达5000:1 PWM调光比的单独PWM输入。每个通道只需要一个纤巧的片式电感器和一个甚至更加小巧的陶瓷输出电容器。所需要的其他元件仅为单个输入电容器和电流设定电阻器 (图2)。所有16个通道的箝位二极管、电源开关和具补偿功能的控制逻辑电路都被压缩在LT3595的相对来说比较小56引脚、5mm x 9mm QFN封装之内。图2:一个从45V输入来驱动160个白光LED的16通道LED驱动器。PWM调光比为5000:1。大多数电池供电型便携式产品均具备一个或多个显示屏,用于向用户传递图形信息。

12、然而,TFT-LCD显示屏 (甚至OLED屏) 的供电需要系统设计师给予特别的关注。为了实现TFT-LCD屏的正确供电,一个DC/DC转换器必需要能够以正确上电和断电排序来提供三个独立的输出电压,即:AVDD、VON和VOFF。凌力尔特认识到了这一点,并开发出了专门针对该用途的专用单片式DC/DC转换器。最新推出的一款器件是我们的LT3513。该转换器具备5个独立受控的稳压器,用于提供一个TFT-LCD屏内部所有必要的电源轨。其降压型稳压器能够为逻辑电源轨输送高达1.2A的连续输出电流。可以利用LDO控制器和一个外部NPN MOSFET产生一个较低电压辅助逻辑电源。一个高功率升压型转换器 (I

13、SW = 1.5A)、一个较低功率升压型转换器 (ISW = 250mA) 和一个负输出转换器 (ISW = 250mA) 提供了三个独立的输出电压,即:LCD屏通常需要的AVDD、VON和VOFF。一个集成高压侧PNP提供了VON信号的延迟接通,而显示屏保护电路则将在4个输出中的任一个低于其编程输出电压达10%以上时停用VON,从而起到保护TFT-LCD屏的作用。其他特点包括集成肖特基二极管、用于AVDD引脚的PGOOD引脚、输出断接以及用于降压型稳压器的电感器电流检测功能。LT3755/-1是一款60V、高压侧电流检测DC/DC控制器,专为从一个4.5V至40V的输入电压范围来驱动高电流L

14、ED而设计。LT3756/-1采用了相同的设计,但可以从6V至100V的输入来提供至100V的输出。这两款器件的“-1”版本均具备外部同步能力,而标准器件版本则用一个开路LED状态指示器替代了该引脚的功能。这两款器件都非常适合于众多的应用,包括汽车、工业和建筑照明。对于那些需要高于40V输入电压 (比如:48V电源轨) 的应用,LT3756/-1将是优选的解决方案。LT3755/-1和 LT3756/-1均采用一个外部N沟道MOSFET,并能够从一个12V (标称值) 输入来驱动多达14个1A白光LED,从而提供了50W以上的功率。它们内置了一个高压侧电流检测电路,因而使其能够在升压、降压、降

15、压-升压或SEPIC和反激式拓扑结构中使用。LT3755/-1和 LT3756/-1在升压模式中能提供超过 94% 的效率,从而免除了任何增设外部散热装置的需要。一个频率调节引脚允许用户在100kHz至1MHz的范围内设置频率,因而优化了效率,并最大限度地缩减了外部元件的尺寸和成本。再加上所采用3mm3mm QFN封装或耐热性能增强型MSOP-16E封装,LT3755/-1和 LT3756/-1提供了一款非常紧凑的高功率LED驱动器解决方案。LT3755/-1和 LT3756/-1均采用了True Color PWM调光,这种调光方式提供了恒定的LED彩色和高达3000:1的调光范围。对于不太

16、苛刻的调光要求,可采用CTRL引脚来提供一个10:1的模拟调光范围。其固定频率、电流模式架构在一个很宽的电源电压和输出电压范围内实现了稳定的操作性能。一个参考于地电压的FB引脚用作多个LED保护功能电路的输入,从而使转换器能够起一个恒定电压源的作用。附录资料:不需要的可以自行删除煤矿矿井机电设备完好标准一、通用部分1、 紧固件1.1 紧固用的螺栓、螺母、垫圈等齐全、紧固、无锈蚀。1.2 同一部位的螺母、螺栓规格一致。平垫、弹簧垫圈的规格应与螺栓直径相符合。紧固的螺栓、螺母应有防松装置。1.3 用螺栓紧固不透明螺孔的部件,紧固后螺孔须留有大于2倍防松垫圈的厚度的螺纹余量。螺栓拧入螺孔长度应不小于

17、螺栓直径,但铸铁、铜、铝件应不小于螺栓直径的1.5倍。1.4 螺母紧固后,螺栓螺纹应露出螺母13个螺距,不得在螺母下面加多余垫圈减少螺栓的伸出长度。1.5 紧固在护圈内的螺栓或螺母,其上端平面不得超出护圈高度,并需用专用工具才能松、紧。2、 隔爆性能2.1 隔爆结合面(I类)的间隙、直径差或最小有效长度(宽度)必须符合表4-1-1的规定。表中 L 静止隔爆接合面的最小有效长度;L1 螺栓通孔边缘至隔爆接合面边缘的最小有效长度;W 静止隔爆接合面及操纵杆与杆孔隔爆接合面最大间隙或直径差;转轴与轴孔隔爆接合面最大直径差。但快动式门或盖的隔爆接合面的最小有效长度须不小于25mm。 表4-1-1I类隔

18、爆接合面结构参数mm接合面型 式LL1W外壳容积V(t)V0.1V0.1平面、止口或圆筒结构6.012.525.040.06.08.09.015.00.300.400.500.400.500.60带有滚动轴承的圆筒结构6.012.525.040.00.400.500.600.400.500.600.802.2 操纵杆直径(d)与隔爆接合面长度(L)应符合表4-1-2的规定。表4-1-2操纵杆直径或圆筒直径与隔爆接合面的结构参数mm操纵杆直径隔爆接合面长度d66d2525dL6LdL252.3 隔爆电动机轴与轴孔的隔爆接合面在正常工作状态下不应产生摩擦。用圆筒隔爆接合面时,轴与轴孔配合的最小单边

19、间隙须不小于0.075mm;用滚动轴承结构时,轴与轴孔的最大单边间隙须不大于表4-1-1规定W值的。2.4 隔爆接合面的表面粗糙度不大于;操纵杆的表面粗糙度不大于。2.5 螺纹隔爆结构:螺纹精度不低于3级;螺距不小于0.7mm;螺纹的最少啮合扣数、最小拧入深度应符合表4-1-3的规定。表4-1-3螺纹的最少啮合扣数、最小拧入深度mm外壳净容积V(t)最小拧入深度最少啮合扣数V0.10.1V2.02.0V5.09.012.562.6 隔爆接合面的法兰减薄厚度,应不大于原设计规定的维修余量。2.7 隔爆接合面的缺陷或机械伤痕,将其伤痕两侧高于无伤表面的凸起部分磨平后,不得超过下列规定:a.隔爆面上

20、对局部出现的直径不大于1mm、深度不大于2mm的砂眼,在40、25、15mm宽的隔爆面上,每1cm2不得超过5个;10mm宽的隔爆面上,不得超过2个。b.产生的机械伤痕,宽度与深度不大于0.5mm;其长度应保证剩余无伤痕隔爆面有效长度不小于规定长度的2/3。2.8 隔爆接合面不得有锈蚀及油漆,应涂防锈油或磷化处理。如有锈迹,用面纱擦净后,留有呈青褐色氧化亚铁状痕迹,用手摸无感觉者仍算合格。2.9 用螺栓固定的隔爆接合面,其紧固应以压平弹簧垫圈不松动为合格。2.10 观察窗孔胶封及透明度良好,无破损、无裂纹。2.11引进设备的隔爆性能应符合煤矿机电设备检修质量标准电气设备分册的附录5-A、B、C

21、、D的规定。2.12 凡不合格1.2.11.2.11任意一条者即任为该装备失去隔爆性能,称为失爆,不得评为完好设备。3、 接线3.1 进线嘴连接紧固,密封良好,并应符合下列规定: a.密封圈材质须用邵尔硬度为4555度的橡胶制造,并按规定进行老化处理。 b.接线后紧固件的紧固程度以抽拉不窜动为合格。线嘴压紧应有余量,线嘴与密封圈之间应加金属垫圈。压叠式线嘴压紧电缆后的压扁量不超过电缆直径的10。 c.密封圈内径与电缆外经差应小于1mm;密封圈外径与进线装置内径差应符合表414的规定;密封圈宽度应大于电缆外经的0.7倍,但必须大于10mm;厚度应大于电缆外经的0.3倍,但必须大于4mm(70mm

22、的橡套电缆例外)。密封圈无破损,不得割开使用。电缆与密封圈之间不得包扎其他物品。 d.低压隔爆开关引入铠装电缆时,密封圈应全部套在电缆铅皮上。表4-1-4密封圈外径与进线装置内径间隙 mm密封圈外径D密封圈外径与进线装置内径间隙D2020D6060D1.01.52.0e.电缆护套(铅皮)穿入进线嘴长度一般为515mm。如电缆粗穿不进时,可将穿入部分锉细(但护套与密封圈结合部位不得锉细)。 f.低压隔爆开关空间得接线嘴应用密封圈及厚度不小于2mm得钢垫板封堵压紧。其紧固程度:螺旋线嘴用手拧紧为合格;压叠式线嘴用手晃不动为合格。钢垫板应置于密封圈得外边,其直径与进线装置内径差应符合表4-1-4得规

23、定。高压隔爆开关空间得接线嘴应用与线嘴法兰厚度、直径相符的钢垫板堵封压紧,其隔爆结合面得间隙应符合表4-1-1得规定。 g.高压隔爆开关接线盒引入铠装电缆后,应用绝缘相交灌至电缆三叉以上。 h.凡不符合上述规定之一者,即为失爆,不得评为完好设备。3.2 接线装置齐全、完整、紧固,导电良好,并符合下列要求: a.绝缘座完整无裂纹; b.接线螺栓和螺母的螺纹无损伤,无放电痕迹,接线零件齐全,有卡爪、弹簧垫、背帽等; c.接线整齐,无毛刺,卡爪不压绝缘胶皮或其他绝缘物,也不得压或接触屏蔽层; d.接线盒内导线的电气间隙和爬电距离,应符合GB3836.383爆炸性环境用防暴电气设备增安型电器设备“e”

24、的规定; e.隔爆开关电源、负荷引入装置,不得颠倒使用。3.3 固定电气设备接线应符合下列要求: a.设备引入(出)线的终端线头,应用线鼻子或过渡接头接线; b.导线连接牢固可靠,接头温度不得超过导线温度。 3.4 电缆的连接除应符合煤矿安全规程第449条的规定外,并应符合下列要求: a 电缆芯线的连接严禁绑扎,应采用压接或焊接。连接后的接头电阻不应大于同长度芯线电阻的1.1倍,其抗拉强度不应小于原芯线的80。不同材质芯线的连接应采用过渡接头,其过渡接头电阻值不应大于同长度芯线电阻值的1.3倍; b 高、低压铠装电缆终端应灌注绝缘材料,户内可采用环氧树脂干封。中间接线盒应灌注绝缘胶。4、 安全

25、供电4.1 高、低压电气设备的短路、漏电、接地等保护装置,必须符合煤矿安全规程、矿井保护接地装置的安全、检查、测定工作细则、煤矿井下检漏继电器安装、运行、维护与检修细则和矿井低压电网短路保护装置的整定细则的规定。 4.2 短路保护计算整定合格,动作灵敏可靠。 4.3 漏电保护装置使用合格。4.4 接地装置 4.4.1接地螺栓符合下列标准:a电气设备的金属外壳和铠装电缆接线盒的外接地螺栓应齐全完整,并标志“”符号(运行中移动的采掘机械设备除外)。 b电气设备接线盒应设有内接地螺栓,并标志“”符号(电机车上的电气设备及电压36V以下的电气设备除外)。 c 外接地螺栓直径 容量小于或等于5KW的不小

26、于M8; 容量大于5KW至10KW不小于M10; 容量大于10KW的不小于M12; 通讯、信号、按钮、照明灯等小型设备不小于M6。 d 接地螺栓应进行电镀防锈处理。4.4.2 接地线符合下列规定: a 接主接地极的接地母线,其截面积应不小于: 镀锌铁线 100 mm 扁 钢 254 mm 铜 线 50 mm b 电气设备外壳同接地母线或局部接地极的连线盒电缆接线盒两端的铠装、铅皮的连接接地线,其截面积应不小于: 铜 线 25 mm 扁 钢 50 mm(厚度不小于4mm) 镀锌铁线 25 mm4.4.3 接地电阻不得大于下列数值:a 100KVA以上(低压中性点直接接地系统)4;b 100KVA

27、以上变压器供电线路重复接地10;c 100KVA以下变压器10;d 100KVA以下变压器供电线路重复接地30;e 高、低压电气设备联合接地4;f 电流、电压互感器二次线圈10;g 高压线路的保护网或保护线;h 井下设备2;i 井下手持移动电气设备1。4.5 设备闭锁装置齐全可靠。4.6 井下供电应符合煤矿安全规程第470条的规定,即做到“三无、四有、两全、三全、三坚持”。5、 不漏油、不漏电的规定 5.1 不漏油 固定结合面及阀门、油标管等不应有油迹。运动部位允许有油迹,但擦干后在3min不见油,半小时不成滴。非密闭运动部件润滑油脂不得甩到其他部件和基础上。 5.2 不漏电 网路的绝缘电阻不

28、小于下列规定,漏电继电器正常投入运行。 1140V 60K; 660V 30K; 380V 15K; 127V 10K。6、 电气性能检测6.1 电气设备绝缘性能必须按煤矿电气试验规程(试行)规定的周期和项目进行试验,并符合标准,有记录可考查。 6.2 绝缘油,新油使用前应做油质分析;运行中的油,每年做一次简化分析;多油断路器的油,每半年进行一次耐压试验。其他试验项目应按煤矿电气试验规程(试行)规定进行。有记录可查。 6.3 继电保护装置计算整定检验,每年进行一次;对矿井电源的继电保护装置,每半年检验一次,并符合整定方案,有记录可查。 6.4 指示回转仪表应每年检验一次,其准确登记不得低于2.5级;电源计量仪表应每半年校验一次,其准确等级不得低于1.0级。有记录可查。7、 设备使用 7.1 高、低压开关的选用应符合煤矿安全规程第421条的要求,与被控制设备的容量应匹配,有下列情况之一者,不得评定为完好设备。 a 超容量、超电压等级使用者; b 不符合使用范围者; c 继电保护失灵,熔体选用不合格者; d 隔爆磁力起动器用小喇叭嘴引出动力线者。 7.2 井下隔爆型电气设备,必须有在下井前,经过指定的隔爆电气设备检查员检查出具的合格证,否则一律不得评定为完好。8、 安全防护8.1 机房(峒室)和电气设备,一切可能危机人身

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论