精品解析人教版九年级数学下册第二十八章-锐角三角函数专项攻克练习题(名师精选)_第1页
精品解析人教版九年级数学下册第二十八章-锐角三角函数专项攻克练习题(名师精选)_第2页
精品解析人教版九年级数学下册第二十八章-锐角三角函数专项攻克练习题(名师精选)_第3页
精品解析人教版九年级数学下册第二十八章-锐角三角函数专项攻克练习题(名师精选)_第4页
精品解析人教版九年级数学下册第二十八章-锐角三角函数专项攻克练习题(名师精选)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人教版九年级数学下册第二十八章-锐角三角函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、的值为( )A1B2CD2、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是(

2、 )A2BCD3、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m如果在坡度为1:2的山坡上种树,也要求株距为4m,那么相邻两树间的垂面距离为()A4mB8mC2mD1m4、如图,中,点是边上一动点,连接,以为直径的圆交于点若长为4,则线段长的最小值为( )ABCD5、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD6、若tanA=2,则A的度数估计在( )A在0和30之间B在30 和45之间C在45和60之间D在60和90之间7、如图,在中,点P为AC上一点,且,则的值为( )A3B2CD8、已知正三角形外接

3、圆半径为,这个正三角形的边长是( )ABCD9、如图,AC是电杆AB的一根拉线,测得米,则拉线AC的长为( )A米B6sin52米C米D米10、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在半径为1的O中,弦AB、AC分别是和 ,则BAC的度数是_2、正八边形的半径为6,则正八边形的面积为_3、如图,在平面直角坐标系xOy中,点B在x轴正半轴上,点D在y轴正半轴上,C经过A,B,D,O四点,OAB120,OB4,则点D的坐标是_4、如图所示,在RtABC中,ACB = 90,A

4、= 30,AC = 15 cm,点O在中线CD上,当半径为3 cm的O与ABC的边相切时,OC =_ 5、_三、解答题(5小题,每小题10分,共计50分)1、如图,已知抛物线(为常数,且0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求的值;(3)在(1)的条件下,直线BD上是否存在点E,使AEC=45?若存在,请直接写出点E的横坐标;若不存在,请说明理由2、定义:如果一个三角形一条边上的高与这条边的比值叫做这条边所对角的准

5、对(记作qad)如图1,在ABC中,AHBC于点H,则qadBAC当qadBAC时,则称BAC为这个三角形的“金角”已知在矩形ABCD中,AB3,BC6,ACE的“金角”EAC所对的边CE在BC边上,将ACE绕点C按顺时针方向旋转(090)得到ACE,AC交AD边于点F(1)如图2,当45时,求证:ACF是“金角”(2)如图3,当点E落在AD边上时,求qadAFC的值3、【问题背景】如图1,P是等边ABC内一点,APB150,则PA2+PB2PC2小刚为了证明这个结论,将PAB绕点A逆时针旋转60,请帮助小刚完成辅助线的作图;【迁移应用】如图2,D是等边ABC外一点,E为CD上一点,ADBE,

6、BEC120,求证:DBE是等边三角形;【拓展创新】如图3,EF6,点C为EF的中点,边长为3的等边ABC绕着点C在平面内旋转一周,直线AE、BF交于点P,M为PG的中点,EFFG于F,FG4,请直接写出MC的最小值4、计算(1) (2)4x28x105、如图,AB是O的弦,OPOA交AB于点P,过点B的直线交OP的延长线于点C,且BC是O的切线(1)判断CBP的形状,并说明理由;(2)若OA6,OP2,求CB的长;(3)设AOP的面积是S1,BCP的面积是S2,且,若O的半径为6,BP4,求tanAPO-参考答案-一、单选题1、A【分析】直接求解即可【详解】解:=1,故选:A【点睛】本题考查

7、特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键2、C【分析】根据网格的特点,勾股定理求得的长,进而根据勾股定理逆定理判定是直角三角形,进而根据正弦的定义求解即可【详解】解:是直角三角形,且是斜边故选C【点睛】本题考查了网格中勾股定理与勾股定理的逆定理的应用,正弦的定义,证明是直角三角形是解题的关键3、C【分析】根据坡度的概念求出AC,得到答案【详解】解:如图,AB的坡度为1:2,即,解得,AC=2,故选:C【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键4、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,

8、连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.5、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键6、D【分析】由题意直接结合特殊锐角三角

9、函数值进行分析即可得出答案.【详解】解:,.故选:D.【点睛】本题考查特殊锐角三角函数值的应用,熟练掌握是解题的关键.7、A【分析】过点P作PDAB交BC于点D,因为,且,则tanPBD=tan45=1,得出PB=PD,再有,进而得出tanAPB的值【详解】解:如图,过点作交于点,,,且,PBD=45,又,故选A【点睛】本题主要考查了相似三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解8、B【分析】如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 再由等边三角形的性质,可得OAB=30,然后根据锐角三角函数,即可求解【详解】解:如图, 为正三角形A

10、BC的外接圆,过点O作ODAB于点D,连接OA, 根据题意得:OA= ,OAB=30,在中, ,AB=3,即这个正三角形的边长是3故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键9、D【分析】根据余弦定义:即可解答【详解】解:,米,米;故选D【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义10、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选

11、:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解二、填空题1、15或75#75或15【解析】【分析】由题意可知半径为1,弦AB、AC分别是和 ,作OMAB,ONAC,根据垂径定理可求出AM与AN的长度,然后分别在直角三角形AOM与直角三角形AON中,利用余弦函数,可求出OAM=45,OAN=30,然后根据AC与AB的位置情况分两种进行讨论即可【详解】解:如图,作OMAB,ONAC;由垂径定理,可得AM=AB,AN=AC,弦AB、AC分别是、,AM=,AN=;半径为1,OA=1;cosOAM=OAM=45;同理cos

12、OAN=OAN=30;BAC=OAM+OAN或OAM-OANBAC=75或15【点睛】本题主要考查垂径定理、勾股定理以及三角形函数本题综合性强,关键是画出图形,作好辅助线,利用垂径定理和直角三角形的特殊余弦值求得角的度数,注意要考虑到两种情况2、【解析】【分析】正八边形的面积有八个全等的等腰三角形面积组成,计算一个等腰三角形的面积,乘以8即可【详解】解:过A作AMOB于M,如图所示,ABO为等腰三角形,OA=OB=6,AOB=,AM是OB上的高,AOM=OAM=45,OM=AM,sin45=,AM=,正八边形的面积为:故答案为【点睛】本题考查了正多边形的面积,等腰直角三角形,等腰三角形,锐角三

13、角函数,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键3、 (0,4)【解析】【详解】先利用圆内接四边形的性质得到BDO60,解直角三角形求出OD,可得结论【分析】解:四边形ABDO为圆的内接四边形,OAB+BDO180,BDO18012060,DOB90,在RtABO中,tanBDO,OB4OD4,D(0,4)故答案为:(0,4)【点睛】本题考查了圆周角定理,圆内接四边形的性质,解直角三角形等知识,解题的关键是证明BDO604、或6【解析】【分析】先求出,分三种情况,利用O的切线的特点构造直角三角形,用三角函数求解即可【详解】解:RtABC中,ACB=90,A=30,B=60,AC

14、 = 15 cm, ,CD为AB边上中线,BDC=BCD=B=60,ACD=A=30,当O与AB相切时,过点O作OEAB于E,如图1,在RtODE中,BDC=60,OE=3,;当O与BC相切时,过O作OEBC,如图2,在RtOCE中,BCD=60,OE=3,;当O与AC相切时,过O作OEAC于E,如图3,在RtOCE中,ACD=30,OE=3,故答案为或6【点睛】此题是切线的性质,主要考查了直角三角形的性质,斜边的中线等于斜边的一半,锐角三角函数,解本题的关键是用圆的切线构造直角三角形,借助三角函数来求解5、#0.75【解析】【详解】解:,故答案为:【点睛】本题考查了三角函数的计算,解题关键是

15、熟记特殊角三角函数值三、解答题1、(1):y=x2-x-2;(2)a=或;(3)在直线BD上不存在点E,使AEC=45理由见解析【解析】【分析】(1)令y=0可得A和B两点的坐标,把点B的坐标代入直线y=-x+b中可得b的值,根据点D的横坐标为-5,可得点D的坐标,将点D的坐标代入抛物线的解析式中可得答案;(2)因为点P在第一象限内的抛物线上,所以ABP为钝角因此若两个三角形相似,只可能是ABCAPB或ABCPAB如图1和图2,按照以上两种情况进行分类讨论,分别计算;(3)根据OA=OC=2,AOC=90画圆O,半径为2,可知若优弧上存在一点E与A,C构建的AEC=45,再证明BD与O相离,圆

16、外角小于圆上角,可得结论【详解】解:(1)抛物线y=a(x+2)(x-4),令y=0,解得x=-2或x=4,A(-2,0),B(4,0),把B(4,0)代入直线y=x+b中,b=3,直线的解析式为y=-x+3,当x=-5时,y=-(-5)+3=,D(-5,),点D(-5,)在抛物线y=a(x+2)(x-4)上,a(-5+2)(-5-4)=,a=,抛物线的函数表达式为:y=(x+2)(x-4)=x2-x-2;(2)由抛物线解析式,令x=0,得y=-8a,C(0,-8a),OC=8a点P在第一象限内的抛物线上,ABP为钝角若两个三角形相似,只可能是ABCAPB或ABCPAB过点P作PNx轴于点N,

17、若ABCAPB,则有BAC=PAB,如图1所示,设P(x,y),则ON=x,PN=y,tanBAC=tanPAB,即:,y=4ax+8a,P(x,4ax+8a),代入抛物线解析式y=a(x+2)(x-4),得a(x+2)(x-4)=4ax+8a,整理得:x2-6x-16=0,解得:x=8或x=-2(与点A重合,舍去),P(8,40a),ABCAPB,即,解得:a=;若ABCPAB,则有ABC=PAB,如图2所示,与同理,可求得:y=2ax+4a,P(x,2ax+4a),代入抛物线解析式y=a(x+2)(x-4),得a(x+2)(x-4)=2ax+4a,整理得:x2-4x-12=0,解得:x=6

18、或x=-2(与点A重合,舍去),P(6,16a),ABCPAB,即,解得:a=;综上所述,a=或;(3)在(1)的条件下,二次函数的解析式为:y=x2-x-2;当x=0时,y=-2,C(0,-2),OA=OC=2,如图3,以O为圆心2为半径画圆,在上取一点E1,过点O作OFBD于F,AOC=90,AE1C=45,在直线y=-x+3中,OM=3,OB=4,BM=5,SOBM=34=5OF,OF=2,直线BD与O相离,AEC45,在直线BD上不存在点E,使AEC=45【点睛】本题是二次函数综合题,主要考查了待定系数法,三角形的面积公式,解直角三角形,直线和圆的位置关系,圆周角的性质,坐标和图形的性

19、质等知识,解(1)的关键是确定点D的坐标,解(2)的关键是利用分类讨论的思想;解(3)的关键是作出辅助线,是一道难度比较大的中考常考题2、(1)见解析(2)【解析】【分析】(1)过点作于点,解直角三角形求得,进而证明,根据“金角”的定义即可证明当45时,ACF是“金角”(2)过点作于点,证明,可得,设,则,根据勾股定理列出方程,解方程即可求得,进而根据定义即可求得答案【详解】解:(1)四边形ABCD是矩形,ACE的“金角”EAC所对的边CE在BC边上, ,BC6,将ACE绕点C按顺时针方向旋转45得到ACE,即如图,过点作于点, 在中,,又设,则在中,在中,四边形是平行四边形当45时,ACF是

20、“金角”(2)如图,过点作于点由(1)可知,则由旋转的性质可得,在中,则在中在等腰直角三角形中,设,则,在中,即解得(舍)则【点睛】本题考查了“准对”,三角形的“金角”的定义,解直角三角形,相似三角形的性质,矩形的性质,旋转的性质,理解新定义是解题的关键3、(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据PAB绕点A逆时针旋转60作图即可;(2)由BEC120得BED60,由平行线的性质得ADEBED60,由等边三角形的性质得BACABCACB60,故可知A、D、B、C共圆,由圆内接四边形对角互补得出ADB120,故可求出BDE60,即可得证;(3)由CACECBCF3得A、E、B

21、、F共圆C得出PABCBFCFB,进而得出APFABC60,作EPF的外接圆Q,则EQF120,求出EQ,连接QG取中点N,由三角形中位线得MN,以点N为圆心MN为半径作N,连接CN,与N交于点,即CM最小为,建立平面直角坐标系求出即可【详解】(1)如图1所示,将绕点A逆时针旋转60得;(2)BEC120,BED60,ADEBED60,ABC是等边三角形,BACABCACB60,A、D、B、C共圆,如图2所示:ADB120,ADEBED60,BDE60,DBE是等边三角形;(3)如图3,CACECBCF3,A、E、B、F共圆C,PABCBFCFB,ABFABC+CBFPAB+APB,APFABC60,EPF60,EF6,作EPF的外接圆Q,则EQF120,QCEF,EQC60,连接QG取中点N,则且,以点N为圆心MN为半径作N,连接CN,与N交于点,即CM最小为,以点F为原点建立平面直角坐标系,,,CM最小为【点睛】本题考查等边三角形的判定与性质,解三角函数以及圆的性质,根据题意作出圆是解题的关键4、(1)0;(2)【解析】【分析】(1)原式利用负整数指数幂,绝对值化简,特殊角的三角函数值以及零指数幂法则计算即可得到结果;(2)移项后配方,开方,即可得出两个一元一次方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论