




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1设a、b是一元二次方程x22x10的两个根,则a2+a+3b
2、的值为( )A5B6C7D82如图,在矩形ABCD中,对角线AC,BD交与点O已知AOB=60,AC=16,则图中长度为8的线段有()A2条B4条C5条D6条3在RtABC中,如果A=,那么线段AC的长可表示为( )A;B;C;D4如图,已知小明、小颖之间的距离为3.6m,他们在同一盏路灯下的影长分别为1.8m,1.6m,已知小明、小颖的身高分别为1.8m,1.6m,则路灯的高为()A3.4mB3.5mC3.6mD3.7m5下列判断错误的是( )A有两组邻边相等的四边形是菱形B有一角为直角的平行四边形是矩形C对角线互相垂直且相等的平行四边形是正方形D矩形的对角线互相平分且相等6如图,A,B,C
3、,D为O的四等分点,动点P从圆心O出发,沿OCDO路线作匀速运动,设运动时间为t(s)APBy(),则下列图象中表示y与t之间函数关系最恰当的是()ABCD7如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)181186181186方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A甲B乙C丙D丁8如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为,则A、B两地之间的距离为(
4、)A800sin米B800tan米C米D米9若一次函数的图像经过第一、二、四象限,则下列不等式中总是成立的是( )ABCD10通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )ABCD二、填空题(每小题3分,共24分)11一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球_个(以上球除颜色外其他都相同)12在、1、2五个数中,若随机取一个数作为反比例函数中的值,则该函数图象在第二、第四象限的概率是_13如图,已知中,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线
5、交于点F,若是直角三角形,则AF的长为_.14如图,将半径为2,圆心角为90的扇形BAC绕点A逆时针旋转60,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_15一元二次方程(x1)21的解是_16某果园2014年水果产量为100吨,2016年水果产量为144吨,则该果园水果产量的年平均增长率为_ 17某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则列出的方程是_.18从长度为2cm、4cm、6cm、8cm的4根木棒中随机抽取一根,能与长度为3cm和5cm的木棒围成三角形的概率为_三、解答题(共66分)19(10分)自2020年3月开始,我国生猪
6、、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线表示(1)_;(2)求图1表示的售价与时间的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?20(6分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作ABx轴于点B,AOB的面积为1.(1)求反比例函数和一次函数的解析式.(2)若一次函数的图象与x轴相交于点C,求ACO的度数.(3)结合图象直接写出:当0时,x的
7、取值范围.21(6分)平面直角坐标系中,函数(x0),y=x-1,y=x-4的图象如图所示,p(a , b)是直线上一动点,且在第一象限.过P作PMx轴交直线于M,过P作PNy轴交曲线于N.(1)当PM=PN时,求P点坐标(2)当PM PN时,直接写出a的取值范围.22(8分)如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0 x3时,在抛
8、物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)23(8分)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y(件)与销售单价x(元)之间的关系如图所示(1)根据图象直接写出y与x之间的函数关系式(2)设这种商品月利润为W(元),求W与x之间的函数关系式(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?24(8分)关于x的方程x24x2m+20有实数根,且m为正整数,求m的值及此时方程的根25(10分)如图,为的外接圆,过点的切线与的延长线交于点,交于点,.(1)判断与的位置关系,并说明理由;(2)若,求的长.26(10分)甲口袋中装有2个相同的小球,
9、它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和1利用画树状图或列表求下列事件的概率(1)从两个口袋中各随机取出1个小球,恰好两个都是奇数;(2)若丙口袋中装有2个相同的小球,它们分别写有数字6和7,从三个口袋中各随机取出一个小球,恰好三个都是奇数参考答案一、选择题(每小题3分,共30分)1、C【分析】根据根与系数的关系可得a+b=2,根据一元二次方程的解的定义可得a2=2a+1,然后把a2+a+3b变形为3(a+b)+1,代入求值即可【详解】由题意知,a+b=2,a2-2a-1=0,即a2=2a+1,则a2+a+3b=2a+1+a+3b=3(a+b)+1=32+1
10、=1故选C【点睛】本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题2、D【详解】解:在矩形ABCD中,AC=16,AO=BO=CO=DO=16=1AO=BO,AOB=60,AB=AO=1,CD=AB=1,共有6条线段为1故选D3、B【分析】根据余弦函数是邻边比斜边,可得答案【详解】解:由题意,得,故选:【点睛】本题考查了锐角三角函数的定义,利用余弦函数的定义是解题关键4、B【分析】根据CDABMN,得到ABECDE,ABFMNF,根据相似三角形的性质可知, ,即可得到结论【详解】解:如图,CDABMN,ABECDE,ABFMNF, 即,解
11、得:AB3.5m,故选:B【点睛】本题考查的是相似三角形的应用,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键5、A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可【详解】A. 有两组邻边相等的四边形不一定是菱形,故该选项错误; B. 有一角为直角的平行四边形是矩形,故该选项正确;C. 对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D. 矩形的对角线互相平分且相等,故该选项正确;故选:A【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键6、C【解析】根据题意,分P在OC、CD、DO之间3个阶段,分别分析变化的趋势,又由点
12、P作匀速运动,故图像都是线段,分析选项可得答案【详解】根据题意,分3个阶段; P在OC之间,APB逐渐减小,到C点时, APB为45,所以图像是下降的线段,P在弧CD之间,APB保持45,大小不变,所以图像是水平的线段,P在DO之间,APB逐渐增大,到O点时, APB为90,所以图像是上升的线段,分析可得:C符合3个阶段的描述;故选C.【点睛】本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.7、B【分析】根据平均数与方差的意义解答即可.【详解】解: ,乙与丁二选一,又,选择乙.【点睛】本题考查数据的平均数与方差的意
13、义,理解两者所代表的的意义是解答关键.8、D【解析】在RtABC中,CAB=90,B=,AC=800米,根据tan=,即可解决问题.【详解】在RtABC中,CAB=90,B=,AC=800米,tan=,AB=,故选D【点睛】本题考查解直角三角形的应用仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.9、C【分析】首先判断a、b的符号,再一一判断即可解决问题【详解】一次函数yaxb的图象经过第一、二、四象限,a0,b0,故A错误;,故B错误;a2b0,故C正确,ab不一定大于0,故D错误故选:C【点睛】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属
14、于中考常考题型10、A【分析】根据阴影部分面积的两种表示方法,即可解答【详解】图1中阴影部分的面积为:,图2中的面积为:,则故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积二、填空题(每小题3分,共24分)11、1【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解故答案为:1【点睛】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比12、【分析】根据反比例函数的图象在第二、第四象限得出,最后利用概率公式进行求解
15、【详解】反比例函数的图象在第二、第四象限,该函数图象在第二、第四象限的概率是,故答案为:【点睛】本题考查了反比例函数的图象,等可能情况下的概率计算公式,熟练掌握反比例函数图象的特征与概率公式是解题的关键13、或【分析】分别讨论E=90,EBF=90两种情况:当E=90时,由折叠性质和等腰三角形的性质可推出BDC为等腰直角三角形,再求出ABD=ABE=22.5,进而得到F=45,推出ADF为等腰直角三角形即可求出斜边AF的长度;当EBF=90时,先证ABDACB,利用对应边成比例求出AD和CD的长,再证ADFCDB,利用对应边成比例求出AF.【详解】当E=90时,由折叠性质可知ADB=E=90,
16、如图所示,在ABC中,CA=CB=4,C=45ABC=BAC=67.5BDC=90,C=45BCD为等腰直角三角形,CD=BC=,DBC=45EBA=DBA=ABC-DBC=67.5-45=22.5EBF=45F=90-45=45ADF为等腰直角三角形AF=当EBF=90时,如图所示,由折叠的性质可知ABE=ABD=45,BAD=CABABDACB由情况中的AD=,BD=,可得AB=AD=CD=DBC=ABC-ABD=22.8E=ADB=C+DBC=67.5F=22.5=DBCEFBCADFCDBE=BDA=C+DBC=45+67.5-ABD=112.5-ABD,EBF=2ABDE+EBF=1
17、12.5+ABD90F不可能为直角综上所述,AF的长为或.故答案为:或.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,熟练掌握折叠前后对应角相等,分类讨论利用相似三角形的性质求边长是解题的关键.14、【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影S扇形ADES弓形ADS扇形ABCS弓形AD,进而得出答案【详解】连接BD,过点B作BNAD于点N,将半径为2,圆心角为90的扇形BAC绕A点逆时针旋转60,BAD60,ABAD,ABD是等边三角形,ABD60,则ABN30,故AN1,BN,S阴影S扇形ADES弓形ADS扇形ABCS弓
18、形AD故答案为 【点睛】考查了扇形面积求法以及等边三角形的判定与性质,正确得出ABD是等边三角形是解题关键15、x2或0【分析】根据一元二次方程的解法即可求出答案【详解】解:(x1)21,x11,x2或0故答案为:x2或0【点睛】本题主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程16、10%.【分析】1016年的水果产量=1014年的水果产量(1+年平均增长率)1,把相关数值代入即可【详解】根据题意,得100(1+x)1=144,解这个方程,得x1=0.1,x1=-1.1经检验x1=-1.1不符合题意,舍去故答案为10%
19、【点睛】此题考查列一元二次方程;得到1016年水果产量的等量关系是解决本题的关键17、【分析】主要考查增长率问题,一般用增长后的量=增长前的量(1+增长率),用x表示三月份的营业额即可【详解】依题意得三月份的营业额为,故答案为【点睛】本题考查了一元二次方程的应用中的增长率问题,找到关键描述语,就能找到等量关系,是解决问题的关键18、【分析】根据三角形的三边关系得出第三根木棒长度的取值范围,再根据概率公式即可得出答案【详解】两根木棒的长分别是3cm和5cm,第三根木棒的长度大于2cm且小于8cm,能围成三角形的是:4cm、6cm的木棒,能围成三角形的概率是:,故答案为【点睛】本题主要考查三角形的
20、三边关系和概率公式,求出三角形的第三边长的取值范围,是解题的关键.三、解答题(共66分)19、(1);(2);(3)当20天或40天,最小利润为10元千克【分析】(1)把代入可得结论;(2)当时,设,把,代入;当时,设,把,代入,分别求解即可;(3)设利润为,分两种情形:当时、当时,利用二次函数的性质分别求解即可【详解】解:(1)把代入,得到,故答案为:(2)当时,设,把,代入得到,解得,当时,设,把,代入得到,解得,综上所述,(3)设利润为当时,当时,有最小值,最小值为10(元千克)当时,当时,最小利润(元千克),综上所述,当20天或40天,最小利润为10元千克【点睛】本题考查二次函数的应用
21、、一次函数的性质、待定系数法等知识,解题的关键从函数图象中获取信息,利用待定系数法求得解析式20、(1)y=;y=x+1;(2)ACO=45;(3)0 xy0时,0 xy0时,1x0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.21、(1)(2,1)或(,);(2)【分析】(1)根据直线与直线的特征,可以判断为平行四边形,且,再根据坐标特征得到等式=3 ,即可求解;(2)根据第(1)小题的结果结合图象即可得到答案.【详解】(1)直线与轴交点,直线与轴交点 ,直线 与直线平行,且轴,为平行四边形,轴, 在的图象上, ,在直线上 , , ,=3 ,解得
22、:或,(2)如图,或, ,当点在直线和区间运动时,,【点睛】本题考查了一次函数与反比例函数的交点问题,利用函数图象性质解决问题是本题的关键22、(1)y=x24x+3;(2)(2,)或(2,7)或(2,1+2)或(2,12);(3)E点坐标为(,)时,CBE的面积最大【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,交直线BC于点F,交x轴于点D,可设出E
23、点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去
24、)或t=7,此时M(2,7);当MP=PC时,则有|t+1|=2,解得t=1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0 x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大考点:二次函数综合题23、(1)y;(2)W;(3
25、)这种商品的销售单价定为65元时,月利润最大,最大月利润是1【分析】(1)当40 x60时,设y与x之间的函数关系式为y=kx+b,当60 x90时,设y与x之间的函数关系式为y=mx+n,解方程组即可得到结论;(2)当40 x60时,当60 x90时,根据题意即可得到函数解析式;(3)当40 x60时,W=-x2+210 x-5400,得到当x=60时,W最大=-602+21060-5400=3600,当60 x90时,W=-3x2+390 x-9000,得到当x=65时,W最大=-3652+39065-9000=1,于是得到结论【详解】解:(1)当40 x60时,设y与x之间的函数关系式为
26、ykx+b,将(40,140),(60,120)代入得,解得:,y与x之间的函数关系式为yx+180;当60 x90时,设y与x之间的函数关系式为ymx+n,将(90,30),(60,120)代入得,解得:,y3x+300;综上所述,y;(2)当40 x60时,W(x30)y(x30)(x+180)x2+210 x5400,当60 x90时,W(x30)(3x+300)3x2+390 x9000,综上所述,W;(3)当40 x60时,Wx2+210 x5400,10,对称轴x105,当40 x60时,W随x的增大而增大,当x60时,W最大602+2106054003600,当60 x90时,W3x2+390 x9000,30,对称轴x65,60 x90,当x65时,W最大3652+3906590001,13600,当x65时,W最大1,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是1【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用根据题意分情况建立二次函数的模型是解题的关键24、m=1,【分析】直接利用根的判别式得出m的取值范围,再由m为正整数进而求出m的值,然后再将m代入方程中解方程得出答案【详解】解:关于x的方程x24x2m+20有实数根解得又为正整数将代回方程中,得到x24x40即求得方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗信息化发展新趋势电子病历与耗材管理系统的未来展望
- 医疗设备的人性化视觉设计
- 医疗设备生命周期管理与供应链优化
- 医疗咨询中的沟通艺术与策略
- 高二德育工作总结
- 感染性心内膜炎的临床护理
- 健康科技医疗信息化升级的驱动力量
- 医疗健康数据的匿名化处理与利用
- 公司办公电脑采购合同范例
- 仪器标准租赁合同范例
- 建设工程农民工工资结算清单
- 基于PLC的工业危废处理-灰渣输送控制系统的设计
- 卡西欧dh800电吹管说明书
- 理解词语句子的方法PPT
- 流式细胞术(免疫学检验课件)
- 碰撞与冲击动力学
- 2023年06月人民教育出版社在职人员公开招聘笔试题库含答案解析-1
- 颈部肿块诊断及鉴别诊断课件
- 清算方案模板9篇
- 个体诊所药品管理制度-范文
- 螺旋输送机的设计大学论文
评论
0/150
提交评论