




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200
2、件衬衣,则其中次品的件数大约是( )抽取件数(件)501001502005008001000合格频数4898144193489784981A12B24C1188D11762如图,在O中,已知OAB=22.5,则C的度数为()A135B122.5C115.5D112.53如图,将RtABC绕直角顶点C顺时针旋转90得到DEC,连接AD,若BAC26,则ADE的度数为()A13B19C26D294如图,过O上一点C作O的切线,交O直径AB的延长线于点D若D40,则A的度数为()A20B25C30D405用配方法解方程2x2x20,变形正确的是()AB0CD6已知袋中有若干个球,其中只有2个红球,它
3、们除颜色外其它都相同若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A2B4C6D87已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是( )A取时的函数值小于0B取时的函数值大于0C取时的函数值等于0D取时函数值与0的大小关系不确定8一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为( )A8B10C20D409在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号
4、中出现的概率为( )ABCD10如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(4,4),(2,1),则位似中心的坐标为()A(0,3)B(0,2.5)C(0,2)D(0,1.5)二、填空题(每小题3分,共24分)11二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:;一元二次方程的解是,;当时,其中正确的结论有_12如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为_13某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗
5、杆高为_14天水市某校从三名男生和两名女生中选出两名同学做为“伏羲文化节”的志愿者,则选出一男一女的概率为15二次函数y=ax1+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=1,下列结论:4a+b=0;9a+c3b; 8a+7b+1c0;若点A(3,y1)、点B( ,y1)、点C( ,y3)在该函数图象上,则y1y3y1;若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x115x1其中正确的结论有_个16关于的一元二次方程的二根为,且,则_.17已知二次函数yax2+bx+c的图象如图所示,则a_1,b_1,c_118在 中, , ,点D在边AB上,
6、且 ,点E在边AC上,当 _时,以A、D、E为顶点的三角形与 相似三、解答题(共66分)19(10分)已知如图,O的半径为4,四边形ABCD为O的内接四边形,且C2A(1)求A的度数(2)求BD的长20(6分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60(1)求ABC的度数;(2)求证:AE是O的切线;(3)当BC=4时,求劣弧AC的长21(6分)解方程:x24x5122(8分)如图,直线y2x与反比例函数y(x0)的图象交于点A(4,n),ABx轴,垂足为B(1)求k的值;(2)点C在AB上,若OCAC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若
7、SOCDSACD,求点D的坐标23(8分)乐至县城有两座远近闻名的南北古塔,清朝道光11年至13年(公元1831-1833年)修建,南塔名为“文运塔”,高30米;北塔名为“凌云塔”.为了测量北塔的高度AB,身高为1.65米的小明在C处用测角仪CD,(如图所示)测得塔顶A的仰角为45,此时小明在太阳光线下的影长为1.1米,测角仪的影长为1米.随后,他再向北塔方向前进14米到达H处,又测得北塔的顶端A的仰角为60,求北塔AB的高度(参考数据1.414,1.732,结果保留整数)24(8分)如图,反比例函数y(k0,x0)的图象与矩形OABC的边AB、BC分别交于点E、F,E(,6),且E为BC的中
8、点,D为x轴负半轴上的点(1)求反比倒函数的表达式和点F的坐标;(2)若D(,0),连接DE、DF、EF,则DEF的面积是 25(10分)如图1,将边长为的正方形如图放置在直角坐标系中(1)如图2,若将正方形绕点顺时针旋转时,求点的坐标;(2)如图3,若将正方形绕点顺时针旋转时,求点的坐标26(10分)如图,在平面直角坐标系xOy中,ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)按下列要求作图:将ABC向左平移4个单位,得到A1B1C1;将A1B1C1绕点B1逆时针旋转90,得到A1B1C1(1)求点C1在旋转过程中所经过的路径长参考答案一、选择题(每小题3分,共30
9、分)1、B【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02,出售1200件衬衣,其中次品大约有12000.02=24(件),故选:B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比2、D【解析】分析:OA=OB,OAB=OBC=22.5AOB=18022.522.5=135如图,在O取点D,使点D与点O在AB的同侧则C与D是圆内接四边形的对角,C=180D =
10、112.5故选D3、B【分析】根据旋转的性质可得ACCD,CDEBAC,再判断出ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出CDA45,根据ADECDACDE,即可求解.【详解】RtABC绕其直角顶点C按顺时针方向旋转90后得到RtDEC,ACCD,CDEBAC26,ACD是等腰直角三角形,CDA45,ADECDACDE452619故选:B【点睛】本题主要考查旋转的性质和等腰直角三角形的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键,4、B【分析】直接利用切线的性质得出OCD=90,进而得出DOC=50,进而得出答案【详解】解:连接OC,DC是O的切线,C为切点,OCD=9
11、0,D=40,DOC=50,AO=CO,A=ACO,A=DOC=25故选:B【点睛】此题主要考查了切线的性质,正确得出DOC=50是解题关键5、D【解析】用配方法解方程2x20过程如下:移项得:,二次项系数化为1得:,配方得:,即:.故选D6、D【解析】试题解析:袋中球的总个数是:2=8(个)故选D7、B【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:抛物线的对称轴x=,设抛物线与x轴交于点A、B,AB1,x取m时,其相应的函数值小于0,观察图象可知,x=m-1在点A的左侧,x=m-1时,y0,故选B【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用
12、函数图象解决问题,体现了数形结合的思想8、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解【详解】由题意可得,0.2,解得,m20,经检验m=20是所列方程的根且符合实际意义,故选:C【点睛】本题利用了用大量试验得到的频率可以估计事件的概率关键是根据红球的频率得到相应的等量关系9、B【分析】两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,根据概率公式即可求解.【详解】解:两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,所以“9”这个数字在这两辆车牌号中出现的概率为.故选:B.【点睛】本题考查了概率的计算,
13、掌握概率计算公式是解题关键.10、C【解析】如图,连接BF交y轴于P,四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),点C的坐标为(0,4),点G的坐标为(0,1),CG=3,BCGF,GP=1,PC=2,点P的坐标为(0,2),故选C【点睛】本题考查的是位似变换的概念、坐标与图形性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心是解题的关键二、填空题(每小题3分,共24分)11、【分析】由抛物线的开口向下知a0,与y轴的交点在y轴的正半轴上得到c0,由对称轴为,得到b0,可
14、以进行分析判断;由对称轴为,得到2a=b,b-2a=0,可以进行分析判断;对称轴为x=-1,图象过点(-4,0),得到图象与x轴另一个交点(2,0),可对进行分析判断;抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),即可对进行判断【详解】解:抛物线的开口向下,a0,与y轴的交点在y轴的正半轴上,c0,对称轴为0b0,abc0,故正确;对称轴为,2a=b,2a-b=0,故正确;对称轴为x=-1,图象过点A(-4,0),图象与x轴另一个交点(2,0),关于x的一元二次方程ax2+bx+c=0的解为x=-4或x=2,故错误;抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),当y
15、0时,-4x2,故正确;其中正确的结论有:;故答案为:.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用12、【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率【详解】解:因为蓝色区域的圆心角的度数为120,所以指针落在红色区域内的概率是=,故答案为.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率计算方法是利用长度比,面积比,体积比等13、20m【解析】根据相同时刻的物高与影长成比例
16、列出比例式,计算即可【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160:10,解得故答案是:20m【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键14、【解析】试题分析:画树状图得:共有20种等可能的结果,选出一男一女的有12种情况,选出一男一女的概率为:故答案为考点:列表法与树状图法求概率15、2【分析】根据二次函数的图象与系数的关系即可求出答案【详解】由对称轴可知:x1,4ab0,故正确;由图可知:x2时,y0,9a2bc0,即9ac2b,故错误;令x1,y0,abc0,b4a,c5a,8a7b1c8a18a10a20a由开口可知:a0,8a7
17、b1c20a0,故正确;点A(2,y1)、点B( ,y1)、点C( ,y2)在该函数图象上,由抛物线的对称性可知:点C关于直线x1的对称点为(,y2),2,y1y1y2故错误;由题意可知:(1,0)关于直线x1的对称点为(5,0),二次函数yax1bxca(x1)(x5),令y2,直线y2与抛物线ya(x1)(x5)的交点的横坐标分别为x1,x1,x1l5x1故正确;故正确的结论有2个答案为:2【点睛】本题考查二次函数的图象,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型16、【分析】先降次,再利用韦达定理计算即可得出答案.【详解】的一元二次方程的二根为又,代入得解得:m
18、=故答案为.【点睛】本题考查的是一元二次方程根与系数的关系,若的一元二次方程的二根为,则,.17、 【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:由抛物线的开口方向向下可推出a1;因为对称轴在y轴左侧,对称轴为x1,又因为a1,b1;由抛物线与y轴的交点在y轴的正半轴上,c1【点睛】本题考查了二次函数的图象和性质,属于简单题,熟悉二次函数的图象是解题关键.18、【解析】当时,A=A,AEDABC,此时AE=;当时,A=A,ADEABC,此时AE=;故答案是:.三、解答题(共66分)19、
19、(1)60;(2)【分析】(1)根据圆内接四边形的性质即可得到结论;(2)连接OB,OD,作OHBD于H根据已知条件得到BOD120;求得OBDODB30,解直角三角形即可得到结论【详解】(1)四边形ABCD为O的内接四边形,C+A180,C2A,A60;(2)连接OB,OD,作OHBD于HA60,BOD2A,BOD120;又OBOD,OBDODB30,OHBD于H,在RtDOH中,即,OHBD于H,.【点睛】此题考查圆的性质,垂径定理,勾股定理,圆周角定理,在圆中求弦长、半径、弦心距三个量中的一个时,通常利用勾股定理与垂径定理进行计算.20、(1)60;(2)证明略;(3)【分析】(1)根据
20、ABC与D都是劣弧AC所对的圆周角,利用圆周角定理可证出ABC=D=60;(2)根据AB是O的直径,利用直径所对的圆周角是直角得到ACB=90,结合ABC=60求得BAC=30,从而推出BAE=90,即OAAE,可得AE是O的切线;(3)连结OC,证出OBC是等边三角形,算出BOC=60且O的半径等于4,可得劣弧AC所对的圆心角AOC=120,再由弧长公式加以计算,可得劣弧AC的长【详解】(1)ABC与D都是弧AC所对的圆周角,ABC=D=60; (2)AB是O的直径,ACB=90BAC=30,BAE=BAC+EAC=30+60=90,即BAAE,AE是O的切线;(3)如图,连接OC,OB=O
21、C,ABC=60,OBC是等边三角形,OB=BC=4,BOC=60,AOC=120,劣弧AC的长为=【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.21、x1或x2【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方【详解】x2-4x-2=1,移项,得x2-4x=2,两边都加上4,得x2-4x+4=2+4,所以(x-2)2=9,则x-2=3或x-2=-3x1或x2【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项
22、的系数是2的倍数22、(1)32;(2)5;(3)D(10,0)或(,0)【分析】(1)先把A(4,n)代入y=2x,求出n的值,再把A(4,8)代入y=求出k的值即可;(2)设AC=x,则OC=x,BC=8x,由勾股定理得:OC2=OB2+BC2,即可求出x的值;(3)设点D的坐标为(x,0),分两种情况:当x4时,当0 x4时,根据三角形的面积公式列式求解即可.【详解】解(1)直线y=2x与反比例函数y=(k0,x0)的图象交于点A(4,n),n=24=8,A(4,8),k=48=32,反比例函数为y=(2)设AC=x,则OC=x,BC=8x,由勾股定理得:OC2=OB2+BC2,x2=4
23、2+(8x)2,x=5,AC=5;(3)设点D的坐标为(x,0)分两种情况:当x4时,如图1,SOCD=SACD,ODBC=ACBD,3x=5(x4),x=10,当0 x4时,如图2,同理得:3x=5(4x),x=,点D的坐标为(10,0)或(,0)【点睛】本题考查了一次函数图像上点的特征,待定系数法求反比例函数解析式,勾股定理,坐标与图形的性质及分类讨论的数学思想,熟练掌握待定系数法及坐标与图形的性质是解答本题的关键23、北塔的高度AB约为35米【分析】设AE=x,根据在同一时间,物体高度与影子长度成正比例关系可得CD的长,在RtADE中,由ADE=45可得AE=DE=x,可得EF=(x-1
24、4)米,在RtAFE中,利用AFE的正切列方程可求出x的值,根据AB=AE+BE即可得答案.【详解】设AE=x,小明身高为1.65米,在太阳光线下的影长为1.1米,测角仪CD的影长为1米,CD=1.5(米)BE=CD=1.5(米),在RtADE中,ADE=45,DE=AE=x,DF=14米,EF=DEDF=(x14)米,在RtAFE中,AFE=60,tan60=,解得:x=()(米),故AB=AE+BE=+1.535米答:北塔的高度AB约为35米 【点睛】本题考查解直角三角形的应用,熟练掌握各三角函数的定义及特殊角的三角函数值是解题关键.24、(1)y,F(3,3);(2)SDEF1【分析】(1)利用待定系数法即可求得反比例函数的解析式,根据题意求得B的坐标,进而得到F的横坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辅警工作培训课件
- 农业银行2025钦州市金融科技岗笔试题及答案
- 邮储银行2025遵义市秋招英文面试题库及高分回答
- 中国银行2025广安市秋招笔试综合模拟题库及答案
- 交通银行2025商洛市秋招结构化面试经典题及参考答案
- 2025年3D打印的智能制造技术
- 2025社会救助行业发展趋势报告
- 建设银行2025荆州市秋招无领导模拟题角色攻略
- 邮储银行2025七台河市笔试行测高频题及答案
- 工商银行2025黄南藏族自治州秋招笔试性格测试题专练及答案
- 滑板项目选材指标与标准
- 额窦手术课件
- 智慧养猪解决方案演示课件
- 最新中医骨伤科学考试题库及答案
- 产品形态设计课件完整
- 德国巴斯夫抗氧剂和紫外线吸收剂
- SG-A088接地装置安装工程工检验批质量验收记录
- 《芯片原理与技术》课件微流控芯片
- 混凝土外观质量缺陷及治理措施PPT课件
- 十四条经络养生课件
- 麻醉医师资格分级授权管理能力评价与再授权制及程序培训考核试题及答案
评论
0/150
提交评论