




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1计算 的结果是( )ABCD92边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为( )A1:5B4:5C2:10D2:53某河堤横断面如图所示,堤高米,迎水坡的坡比是(坡比
2、是坡面的铅直高度与水平宽度之比),则的长是( )A米B20米C米D30米4甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A掷一枚正六面体的骰子,出现1点的概率B抛一枚硬币,出现正面的概率C从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D任意写一个整数,它能被2整除的概率5下列长度的三条线段能组成三角形的是()A1,2,3B2,3,4C3,4,7D5,2,86判断一元二次方程是否有实数解,计算的值是( )ABCD7如图,OA交O于点B,AD切O于点D,点C在O上若A40,则C为()A20B25C30D358分别
3、写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )ABCD9在ABC与DEF中,如果B=50,那么E的度数是( )A50;B60;C70;D8010如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是( )ABCD二、填空题(每小题3分,共24分)11廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是_米精确到1米12 “永定楼”,作为门头沟区的地标性建筑,因其坐落在永定河畔而得名为测得其高度,
4、低空无人机在A处,测得楼顶端B的仰角为30,楼底端C的俯角为45,此时低空无人机到地面的垂直距离AE为23 米,那么永定楼的高度BC是_米(结果保留根号) 13如图,在正方体的展开图形中,要将1,2,3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是_14阅读对话,解答问题:分别用、表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(,)的所有取值中使关于的一元二次方程有实数根的概率为_15如图,在ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上设DE,矩形DEFG的面积为,那么关于的函数关系式是_
5、(不需写出x的取值范围)16某一建筑物的楼顶是“人”字型,并铺上红瓦装饰现知道楼顶的坡度超过0.5时,瓦片会滑落下来请你根据图中数据判断这一楼顶铺设的瓦片是否会滑落下来?_(填“会”或“不会”)17汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为_.18如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为_三、解答题(共66分)19(10分)一个布袋中有红、黄、绿三种颜色的球各一个,从中先摸出一
6、个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下它的颜色(1)试用树形图或列表法中的一种列举出这两次摸出球的颜色所有可能的结果;(2)求两次摸出球中至少有一个绿球的概率20(6分)如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别是A(4,1),B(1,2),C(2,4).(1)将ABC向右平移4个单位后得到A1B1C1,请画出A1B1C1,并写出点B1的坐标;(2)A2B2C2和A1B1C1关于原点O中心对称,请画出A2B2C2,并写出点C2的坐标;(3)连接点A和点B2,点B和点A2,得到四边形AB2A2B,试判断四边形AB2A2B的形状(无须说明理由)21(6分)国家
7、教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.最喜欢的锻炼项目人数打球120跑步游泳跳绳30其他(1)这次问卷调查的学生总人数为 ,人数 ;(2)扇形统计图中, ,“其他”对应的扇形的圆心角的度数为 度;(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?22(8分)如图,已知是的一条弦,请用尺规作图法找出的中点(保留作图痕迹,不写作法)23
8、(8分)如图,为的直径,切于点,交的延长线于点,且.(1)求的度数.(2)若的半径为2,求的长.24(8分)如图,双曲线经过点P(2,1),且与直线ykx4(k0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.25(10分)已知反比例函数的图象经过点(2,2)(I)求此反比例函数的解析式;(II)当y2时,求x的取值范围26(10分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量(个)与y销售单价x(元)有如下关系:,设这种双肩包每天的销售利润为w元(1)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(2)
9、如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?参考答案一、选择题(每小题3分,共30分)1、D【分析】根据负整数指数幂的计算方法:,为正整数),求出的结果是多少即可【详解】解:,计算的结果是1故选:D【点睛】此题主要考查了负整数指数幂:,为正整数),要熟练掌握,解答此题的关键是要明确:(1)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(2)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数2、D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径, 则问题可求【详解】解:62
10、+82=102 ,此三角形为直角三角形,直角三角形外心在斜边中点上,外接圆半径为5,设该三角形内接圆半径为r,由面积法68(6+8+10)r,解得r=2,三角形的内切圆半径与外接圆半径的比为2:5 ,故选D【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.3、A【分析】由堤高米,迎水坡AB的坡比,根据坡度的定义,即可求得AC的长【详解】迎水坡AB的坡比,堤高米,(米).故选A.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,掌握坡比的概念是解题的关键4、C【解析】解:A掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B掷一
11、枚硬币,出现正面朝上的概率为,故此选项错误;C从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:0.33;故此选项正确;D任意写出一个整数,能被2整除的概率为,故此选项错误故选C5、B【解析】根据三角形三边关系定理得出:如果较短两条线段的和大于最长的线段,则三条线段可以构成三角形,由此判定即可【详解】A1+2=3,不能构成三角形,故此选项错误;B2+34,能构成三角形,故此选项正确;C3+4=7,不能构成三角形,故此选项错误;D5+28,不能构成三角形,故此选项错误故选:B【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,
12、只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形6、B【解析】首先将一元二次方程化为一般式,然后直接计算判别式即可.【详解】一元二次方程可化为:故答案为B.【点睛】此题主要考查一元二次方程的根的判别式的求解,熟练掌握,即可解题.7、B【分析】根据切线的性质得到ODA90,根据直角三角形的性质求出DOA,根据圆周角定理计算即可【详解】解:切于点故选:B【点睛】本题考查了切线的性质:圆心与切点的连线垂直切线、圆周角定理以及直角三角形两锐角互余的性质,结合图形认真推导即可得解8、B【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二
13、者的比值就是其发生的概率. 因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.9、C【分析】根据已知可以确定;根据对应角相等的性质即可求得的大小,即可解题【详解】解:,与是对应角,与是对应角,故故选:C【点睛】本题考查了相似三角形的判定及性质,本题中得出和是对应角是解题的关键10、D【分析】过点D作DEAB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D 的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【详解】过点D作DEAB交AO于点EDEAB 点D在上 故选D【点睛】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比
14、例是解题的关键.二、填空题(每小题3分,共24分)11、 【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有,即, , 所以两盏警示灯之间的水平距离为:12、【分析】过点A作BC的垂线,垂足为D,则DAC=45,BAD=30,进一步推出AD=CD=AE=米,再根据tanBAD= = ,从而求出BD的值,再由BC=BD+CD即可得到结果.【详解】解:如图所示,过点A作ADBC于D,则DAC=45,BAD=30,ADBC, DAC=45,AD=CD=AE=米,在RtABD中,tanBAD= =,BD=AD = =23(米)BC=B
15、D+CD= (米)故答案为.【点睛】本题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解13、【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:将-1、-2、-3分别填入三个空,共有321=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为.故答案为.【点睛】本题考查概率的求法与运用一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.14、【解析】试题分析:用列表法易得(a,b)所有情况,看使关于x的一元二次方
16、程x3-ax+3b=3有实数根的情况占总情况的多少即可试题解析:(a,b)对应的表格为:方程x3-ax+3b=3有实数根,=a3-8b3使a3-8b3的(a,b)有(3,3),(4,3),(4,3),p(3)=考点:3列表法与树状图法;3根的判别式15、;【分析】根据题意和三角形相似,可以用含的代数式表示出,然后根据矩形面积公式,即可得到与的函数关系式【详解】解:四边形是矩形,上的高,矩形的面积为,得,故答案为:【点睛】本题考查根据实际问题列二次函数关系式、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答16、不会【分析】根据斜坡的坡度的定义,求出坡度,即可得到答案【详
17、解】ABC是等腰三角形,AB=AC=13m,AHBC,CH=BC=12m,AH=m,楼顶的坡度=,这一楼顶铺设的瓦片不会滑落下来故答案是:不会【点睛】本题主要考查斜坡坡度的定义,掌握坡度的定义,是解题的关键17、【解析】分析:设勾为2k,则股为3k,弦为k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率详解:设勾为2k,则股为3k,弦为k,大正方形面积S=kk=13k2,中间小正方形的面积S=(32)k(32)k=k2,故阴影部分的面积为:13 k2-k2=12 k2针尖落在阴影区域的概率为:故答案为点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面
18、积之比18、【分析】根据题意可知扇形ABC围成圆锥后的底面周长就是弧BC的弧长,再根据弧长公式和圆周长公式来求解.【详解】解:作于点,连结OA、BC, BAC=90BC是直径,OB=OC, 圆锥的底面圆的半径故答案为:【点睛】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)利用树状图列举出所有可能,注意是放回小球再摸一次;(2)列举出符合题意的各种情况的个数,再根据概率公式解答即可【详解】(1)列树状图如下:故(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,
19、红),(绿,黄),(绿,绿)共9种情况(2)由树状图可知共有339种可能,“两次摸出球中至少有一个绿球”的有5种,所以概率是:.【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比20、(1)如图,A1B1C1为所作;见解析;点B1的坐标为(3,2);(2)如图,A2B2C2为所作;见解析;点C2的坐标为(2,4);(3)如图,四边形AB2A2B为正方形【分析】(1)利用网格特点和点平移的坐标规律写出、的坐标,然后描点即可得到;(2)利用网格特点和关于原点对称的点的坐标特征写出、的
20、坐标,然后描点即可得到;(3)证明四条相等且对角线相等可判断四边形为正方形【详解】解:(1)如图1,为所作;点的坐标为;(2)如图1,为所作;点的坐标为;(3)如图1,四边形为正方形,(理由:如图2,在四边形外侧构造如图所示直角三角形,由坐标网格的特点易证四个直角三角形全等,从而可得四边形四边都相等,四个角等于直角)【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形21、(1)300,90;(2)10,18;(3)120人【分析】(1)根据打球人数占总人数的4
21、0%可求出总人数,再根据比例关系求出游泳人数,再用总人数减去打球、游泳、跳绳的人数即为的值;(2)用跳绳人数除以总人数,得到n%的值,即可求出n,求出其他所占比例,再乘以360即可得到圆心角度数;(3)用1200人乘以跳绳所占比例即可得出答案.【详解】解:(1)总人数=(人)游泳人数(人)(人)故答案为:300,90;(2)n%=n=10,m%=1-40%-25%-20%-10%=5%“其他”对应的扇形的圆心角的度数为3605%=18故答案为:10,18;(3)由于在调查的300名学生中,喜欢“跳绳”项目的学生有30名,所占的比例为.所以该年级1200名学生中估计喜欢“跳绳”项目的有人.【点睛
22、】本题考查统计图,解题的关键是找到表格数据与扇形图中数据的对应关系.22、见解析【分析】作线段AB的垂直平分线即可得到AB的中点D.【详解】如图,作线段AB的垂直平分线即可得到AB的中点D.【点睛】此题考查作图能力,作线段的垂直平分线,掌握画图方法是解题的关键.23、 (1);(2).【分析】(1)根据等腰三角形性质和三角形外角性质求出COD=2A,求出D=COD,根据切线性质求出OCD=90,即可求出答案;(2)由题意的半径为2,求出OC=CD=2,根据勾股定理求出BD即可【详解】解:(1)OA=OC,A=ACO,COD=A+ACO=2A,D=2A,D=COD,PD切O于C,OCD=90,D=COD=45;(2)D=COD,的半径为2,OC=OB=CD=2,在RtOCD中,由勾股定理得:22+22=(2+BD)2,解得:【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键24、 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品营销设备管理制度
- 药品风险自查管理制度
- 药店医疗设备管理制度
- 药店消毒安全管理制度
- 菜园种菜人员管理制度
- 设备人员变更管理制度
- 设备器械使用管理制度
- 设备工艺参数管理制度
- 设备机构维修管理制度
- 设备管理质量管理制度
- 安霸A12-凌度A12行车记录仪使用说明书
- GB/T 41735-2022绿色制造激光表面清洗技术规范
- MT/T 198-1996煤矿用液压凿岩机通用技术条件
- LY/T 1787-2016非结构用集成材
- GB/T 3880.3-2012一般工业用铝及铝合金板、带材第3部分:尺寸偏差
- GB/T 1503-2008铸钢轧辊
- GB/T 12729.1-2008香辛料和调味品名称
- GB/T 1228-2006钢结构用高强度大六角头螺栓
- GB 4404.3-2010粮食作物种子第3部分:荞麦
- 【精品】高三开学励志主题班会课件
- 套管培训大纲课件
评论
0/150
提交评论