江苏省泰州医药高新区六校联考2023学年九年级数学第一学期期末教学质量检测试题含解析_第1页
江苏省泰州医药高新区六校联考2023学年九年级数学第一学期期末教学质量检测试题含解析_第2页
江苏省泰州医药高新区六校联考2023学年九年级数学第一学期期末教学质量检测试题含解析_第3页
江苏省泰州医药高新区六校联考2023学年九年级数学第一学期期末教学质量检测试题含解析_第4页
江苏省泰州医药高新区六校联考2023学年九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1如图,矩形的对角线交于点O,已知则下列结论错误的是( )ABCD2已知两个相似三角形的面积比为 4:9,则周长的比为 ( )A2:3B4:9C3:2D3二次函数化为的形式,结果正确的是( )ABCD4已知二次函数的图象如图所示,则下列结论正确的是( )ABCD的符号不能确定5如图,下列条件不能判定ADBABC的是

2、( )AABD=ACBBADB=ABCCAB2=ADACD 6孙子算经中有一道题: “今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为( )ABCD7如图,交于点,切于点,点在上. 若,则为( )ABCD8一个圆锥的侧面展开图形是半径为8cm,圆心角为120的扇形,则此圆锥的底面半径为( )AcmBcmC3cmDcm9如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )ABC

3、D10若反比例函数的图象经过,则这个函数的图象一定过( )ABCD11关于抛物线的说法中,正确的是( )A开口向下B与轴的交点在轴的下方C与轴没有交点D随的增大而减小12从数据,6,1.2,中任取一数,则该数为无理数的概率为( )ABCD二、填空题(每题4分,共24分)13如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是_14二次函数(其中m0),下列命题:该图象过点(6,0);该二次函数顶点在第三象限;当x3时,y随x的增大而增大;若当xn时,都有y随x的增大而减小,则.正确的序号是_.15如图,抛物线y=x

4、2+mx+2m2(m0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_16请你写出一个函数,使它的图象与直线无公共点,这个函数的表达式为_17如图,反比例函数y的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足ACBC,当点A运动时,点C始终在函数y的图象上运动,tanCAB2,则k_18同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 三、解答题(共78分)19(8分)如图1,在平面直角坐标系中,抛物线yx2+x+3与x轴交于A、B两点(点A在点B的右侧)

5、,与y轴交于点C,过点C作x轴的平行线交抛物线于点P连接AC(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为(090),连接FA、FC求AF+CF的最小值;(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形OMNG,当点M与点A重合时停止平移设平移的距离为t,正方形OMNG的边MN与AC交于点R,连接OP、OR、PR,是否存在t的值,使OPR为直角三角形?若存在,求出t的值;若不存在

6、,请说明理由20(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使CAD30,CBD60(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由(参考数据:1.7,1.4)21(8分)如图:在RtABC中,C=90,ABC=30。延长CB至D,使DB=AB。连接AD(1)求ADB的度数.(2)根据图形,不使用计算

7、器和数学用表,请你求出tan75的值.22(10分)如图,在ABC中,ABBC,D是AC中点,BE平分ABD交AC于点E,点O 是AB上一点,O过B、E两点,交BD于点G,交AB于点F(1)判断直线AC与O的位置关系,并说明理由;(2)当BD6,AB10时,求O的半径23(10分)永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑. 位于太原市城区东南向山脚畔.数学活动小组的同学对其中一塔进行了测量.测量方 法如下:如图所示,间接测得该塔底部点到地面上一点的距离为,塔的顶端 为点,且,在点处竖直放一根标杆,其顶端为,在的延长 线上找一点,使三点在同一直线上,测得 (1)方法 1,已

8、知标杆,求该塔的高度; (2)方法 2,测得,已知,求该塔的高度.24(10分)在一个不透明的袋子中装有大小、形状完全相同的三个小球,上面分别标有1,2,3三个数字(1)从中随机摸出一个球,求这个球上数字是奇数的概率是 ;(2)从中先随机摸出一个球记下球上数字,然后放回洗匀,接着再随机摸出一个,求这两个球上的数都是奇数的概率(用列表或树状图方法)25(12分)如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交O于E,连结AE,OE交AC于F(1)求证:AED是等腰直角三角形;(2)如图1,已知O的半径为求的长;若D为EB中点,求BC的长(3)如图2,若

9、AF:FD=7:3,且BC=4,求O的半径26如图,在88的正方形网格中,AOB的顶点都在格点上请在网格中画出OAB的一个位似图形,使两个图形以点O为位似中心,且所画图形与OAB的位似为2:1参考答案一、选择题(每题4分,共48分)1、C【分析】根据矩形的性质得出ABCDCB90,ACBD,AOCO,BODO,ABDC,再解直角三角形判定各项即可【详解】选项A,四边形ABCD是矩形,ABCDCB90,ACBD,AOCO,BODO,AOOBCODO,DBCACB,由三角形内角和定理得:BACBDC,选项A正确; 选项B,在RtABC中,tan,即BCmtan,选项B正确;选项C,在RtABC中,

10、AC,即AO,选项C错误;选项D,四边形ABCD是矩形,DCABm,BACBDC,在RtDCB中,BD,选项D正确.故选C【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键2、A【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解【详解】两个相似三角形的面积之比为4:9,两个相似三角形的相似比为2:1,这两个相似三角形的周长之比为2:1故选A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方3、A【分析】将选项展开后与原式对比即可;【详解】A

11、:,故正确;B:,故错误;C:,故错误;D:,故错误;故选A.【点睛】本题主要考查了二次函数的三种形式,掌握二次函数的三种形式是解题的关键.4、A【分析】由题意根据二次函数的图象与性质即可求出答案判断选项【详解】解:由图象可知开口向上a0,与y轴交点在上半轴c0,ac0,故选A.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型5、D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可【详解】解:A、ABD=ACB,A=A,ABCADB,故此选项不合题意;B、ADB=ABC,A=A,ABCAD

12、B,故此选项不合题意;C、AB2=ADAC,A=A,ABCADB,故此选项不合题意;D、=不能判定ADBABC,故此选项符合题意故选D【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似6、D【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子木条=4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:木条绳子=1,据此列出方程组即可【详解】由题意可得,故选:D【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组7、B【分析】根据切线的性质得到ODA=90,根据直角

13、三角形的性质求出DOA,根据圆周角定理计算即可【详解】AD切O于点D,ODAD,ODA=90,A=40,DOA=90-40=50,由圆周角定理得,BCD=DOA=25,故选:B【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键8、A【解析】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:r=cm故选A考点:弧长的计算9、C【解析】试题分析:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选C考点:几何概率10、A【分析】通过已知条件求出,即函数解析式为,然后将选项逐个代入验证即可得

14、.【详解】由题意将代入函数解析式得,解得,故函数解析式为,将每个选项代入函数解析式可得,只有选项A的符合,故答案为A.【点睛】本题考查了已知函数图象经过某点,利用代入法求系数,再根据函数解析式分析是否经过所给的点.11、C【分析】根据题意利用二次函数的性质,对选项逐一判断后即可得到答案【详解】解:A. ,开口向上,此选项错误;B. 与轴的交点为(0,21),在轴的上方,此选项错误;C. 与轴没有交点,此选项正确;D. 开口向上,对称轴为x=6,时随的增大而减小,此选项错误.故选:C.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,熟练掌握并利用二次函数的性质解答12、B【分析】从题中

15、可以知道,共有5个数,只需求出5个数中为无理数的个数就可以得到答案【详解】从,-6,1.2,中可以知道和为无理数其余都为有理数故从数据,-6,1.2,中任取一数,则该数为无理数的概率为,故选:B【点睛】此题考查概率的计算方法,无理数的识别解题关键在于掌握:概率=所求情况数与总情况数之比二、填空题(每题4分,共24分)13、或【分析】先求出点A(-4,0),B(0,-3),利用勾股定理得到AB=5,过点P作PCAB于点C,则PC=1,证明PACBAO,得到,求出PA=,再分点P在点A的左侧和右侧两种情况分别求出OP,即可得到点P的坐标.【详解】令中x=0,得y=-3;令y=0,得x=-4,A(-

16、4,0),B(0,-3),OA=4,OB=3,AB=5,过点P作PCAB于点C,则PC=1,PCA=AOB=90,PAC=BAO,PACBAO,,,PA=,当点P在点A左侧时,PO=PA+OA=+4=,点P的坐标为(-,0);当点P在点A的右侧时,PO=OA-PA=4-=,点P的坐标为(-,0),故答案为:或.【点睛】此题考查一次函数与x轴、y轴的交点坐标,勾股定理,圆的切线的性质定理,相似三角形的判定及性质,解题中注意运用分类讨论的思想.14、【分析】先将函数解析式化成交点时后,可得对称轴表达式,及与x轴交点坐标,由此可以判断增减性.【详解】解:,对称轴为,故该函数图象经过,故正确;, 该函

17、数图象顶点不可能在第三象限,故错误;,则当时,y随着x的增大而增大,故此项错误;当时,即,y随着x的增大而减小,故此项正确.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.15、【分析】过点O作OHAC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案【详解】解:过点O作OHAC交BE于点H,令y=x2+mx+2m2=0,x1=-m,x2=2m,A(-m,0)、B(2m,0),OA=m,OB=2m,AB=3m,D是OC的中点,CD=OD,OHAC,OH=CE,故答案为:【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键

18、是过点O作OHAC交BE于点H,此题有一定的难度16、(答案不唯一)【分析】直线经过一三象限,所以只要找到一个过二、四象限的函数即可.【详解】直线经过一三象限,图象在二、四象限两个函数无公共点故答案为【点睛】本题主要考查正比例函数的图象与性质,掌握正比例函数与反比例函数的图象与性质是解题的关键.17、-1【分析】连接OC,过点A作AEx轴于点E,过点C作CFy轴于点F,通过角的计算找出AOE=COF,结合“AEO=90,CFO=90”可得出AOECOF,根据相似三角形的性质得出比例式,再由tanCAB=2,可得出CFOF的值,进而得到k的值【详解】如图,连接OC,过点A作AEx轴于点E,过点C

19、作CFy轴于点F由直线AB与反比例函数y的对称性可知A、B点关于O点对称,AO=BO又AC=BC,COABAOE+AOF=90,AOF+COF=90,AOE=COF又AEO=90,CFO=90,AOECOF,tanCAB2,CF=2AE,OF=2OE又AEOE=2,CFOF=|k|,|k|=CFOF=2AE2OE=4AEOE=1,k=1点C在第二象限,k=1故答案为:1【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解答本题的关键是求出CFOF=1解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结

20、论18、【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=故答案为考点:列表法与树状图法三、解答题(共78分)19、(1)P(2,3),yACx+3;(2);(3)存在,t的值为3或,理由见解析【分析】(1)由抛物线yx2+x+3可求出点C,P,A的坐标,再用待定系数法,可求出直线AC的解析式;(2)在OC上取点H(0,),连接HF,AH,求出AH的长度,证HOFFOC,推出HFCF,由AF+CFAF+HFAH,即可求解;(3)先求出正方形的边长,通过ARMACO将相关线段用含t的代数式表示出来,再分三种情况进行讨论:当

21、ORP90时,当POR90时,当OPR90时,分别构造相似三角形,即可求出t的值,其中第三种情况不存在,舍去【详解】(1)在抛物线yx2+x+3中,当x0时,y3,C(0,3),当y3时,x10,x22,P(2,3),当y0时,则x2+x+3=0,解得:x14,x26,B(4,0),A(6,0),设直线AC的解析式为ykx+3,将A(6,0)代入,得,k,yx+3,点P坐标为P(2,3),直线AC的解析式为yx+3;(2)在OC上取点H(0,),连接HF,AH,则OH,AH,且HOFFOC,HOFFOC,HFCF,AF+CFAF+HFAH,AF+CF的最小值为;(3)正方形OMNG的顶点N恰好

22、落在线段AC上,GNMN,设N(a,a),将点N代入直线AC解析式,得,aa+3,a2,正方形OMNG的边长是2,平移的距离为t,平移后OM的长为t+2,AM6(t+2)4t,RMOC,ARMACO,即,RM2t,如图31,当ORP90时,延长RN交CP的延长线于Q,PRQ+ORM90,ROM+ORM90,PRQROM,又QOMR90,PQRRMO,PQ2+t-2=t,QR3RM1+t,解得,t13(舍去),t23;如图32,当POR90时,POE+ROM90,POE+EPO90,ROMEPO,又PEOOMR90,PEOOMR,即,解得,t;如图33,当OPR90时,延长OG交CP于K,延长M

23、N交CP的延长线于点T,KPO+TPR90,KOP+KPO90,KOPTPR,又OKPT90,KOPTPR,即,整理,得t2-t+30,b24ac0,此方程无解,故不存在OPR90的情况;综上所述,OPR为直角三角形时,t的值为3或【点睛】本题主要考查二次函数的图象和相似三角形的综合,添加合适的辅助线,构造相似三角形,是解题的关键.20、 (1) ;(2)此校车在AB路段超速,理由见解析.【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可(2)在第一问的基础上,结合时间关系,计算速度,判断,即可【详解】解:(1)由题意得,在RtADC中,tan30,解得A

24、D24在 RtBDC 中,tan60,解得BD8所以ABADBD24816(米)(2)汽车从A到B用时1.5秒,所以速度为161.518.1(米/秒),因为18.1(米/秒)65.2千米/时45千米/时,所以此校车在AB路段超速【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等21、(1)ADB=15;(2) 【分析】(1)利用等边对等角结合ABC是ADB的外角即可求出ADB的度数;(2)根据图形可得DAB=75,设AC=x, 根据,求出CD即可;【详解】(1)DB=ABBAD=BDAABC=30=BAD+BDAADB=15(2)设AC=x,在RtABC

25、中,ABC=30,【点睛】此题考查了解直角三角形,涉及的知识有:勾股定理,含30度直角三角形的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键22、(1)(1)AC与O相切,证明见解析;(2)O半径是【解析】试题分析:(1)连结OE,如图,由BE平分ABD得到OBE=DBO,加上OBE=OEB,则OBE=DBO,于是可判断OEBD,再利用等腰三角形的性质得到BDAC,所以OEAC,于是根据切线的判定定理可得AC与O相切;(2)设O半径为r,则AO=10r,证明AOEABD,利用相似比得到,然后解方程求出r即可试题解析:(1)AC与O相切理由如下:连结OE,如图,BE平分ABD,OB

26、E=DBO,OE=OB,OBE=OEB,OBE=DBO,OEBD,AB=BC,D是AC中点,BDAC,OEAC,AC与O相切;(2)设O半径为r,则AO=10r,由(1)知,OEBD,AOEABD,即,r=,即O半径是考点:圆切线的判定:相似经过半径的外端且垂直于这条半径的直线是圆的切线要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可解决(2)小题的关键是利用相似比构建方程23、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定与性质得出,进而得出答案;(2)根据锐角三角函数的定义列出,然后代入求值即可.【详解】解:则即解得:答:该塔的高度为

27、55 m.在中答:该塔的高度为【点睛】本题考查相似三角形的判定和性质及解直角三角形的应用,熟练掌握相似三角形对应边的比相等和角的正切值的求法是本题的解题关键.24、(1);(2)见解析,【分析】(1)直接根据概率公式解答即可;(2)首先根据题意列出表格,然后列表法求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案【详解】解:(1)从3个球中随机摸出一个,摸到标有数字是奇数的球的概率是;(2)列表如下:第1次 第2次1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)根据表格可知共有9中情况,其中两次都是奇数的是4种,则概率是=【点睛】本题考查了概率,根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论