




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1下列事件是必然事件的是( )A抛掷一枚硬币四次,有两次正面朝上B打开电视频道,正在播放在线体育C射击运动员射击一次,命中十环D方程x22x1=0必有实数根2已知抛物线,则下列说法正确的是( )A抛物线开口向下B抛物线的对称轴是直线C当时,的最大值为D抛物线与轴的交点为3如图,在平面直角坐标系中,一次函数y=-4x
2、+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数 的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是( ) A2B3C4D54如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为40万元,2017年交易额为48.4万元,设2015年至2017年“双十一”交易额的年平均增长率为,则根据题意可列方程为( )ABCD5要得到抛物线,可以将( )A向左平移1个单位长度,再向上平移3个单位长度B向左平移1个单位长度,再向下平移3个单位长度C向右平移1个单位长度,再向上平移3个单位长度
3、D向右平移1个单位长度,再向下平移3个单位长度6在实数|3|,2,0,中,最小的数是()A|3|B2C0D7如图所示是滨河公园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )A(3)(4)(1)(2)B(4)(3)(1)(2)C(4)(3)(2)(1)D(2)(4)(3)(1)8如图,为的直径,点是弧的中点,过点作于点,延长交于点,若,则的直径长为( )A10B13C15D19反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()Am0Bm0Cm1Dm110二次函数y=(x1)2+2,它的图象顶点坐标是()A(2,1)B(
4、2,1)C(2,1)D(1,2)11下列图形中既是中心对称图形又是轴对称图形的是( )ABCD12如图,在APBC中,C40,若O与PA、PB相切于点A、B,则CAB( )A40B50C60D70二、填空题(每题4分,共24分)13如图,在平面直角坐标系中,已知经过原点,与轴、轴分别交于、两点,点坐标为,与交于点,则圆中阴影部分的面积为_. 14若,则的值为_15如图,在平面直角坐标系中,RtABO的顶点O与原点重合,顶点B在x轴上,ABO=90,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C若S四边形ABCD=10,则k的值为 16如图,O的直径AB过弦C
5、D的中点E,若C=25,则D=_17如图,分别以四边形ABCD的各顶点为圆心,以1长为半径画弧所截的阴影部分的面积的和是_18若2,化简_三、解答题(共78分)19(8分)已知:ABC在平面直角坐标系内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是_;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1;四边形AA2C2C的面积是_平方单位20(8分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点
6、,对称轴与轴交于点,连接,求的长点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由21(8分)(1)计算: (2)解不等式:22(10分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50,观测旗杆底部B点的仰角为45(参考数据:sin500.8,tan501.2)(1)若已知CD20米,求建筑物BC的高度;(2)若已知旗杆的高度AB5米,求建筑物BC的高度23(10分)计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植为了解学生最喜欢哪一种活动项目,随机抽
7、取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是 ;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数24(10分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点(1)求的值和点的坐标;(2)如果点为轴上的一点,且直接写出点A的坐标25(12分)如图,是的直径,半径OC弦AB,点为垂足,连、.(1)若,求的度数;(2)若,求的半径.2
8、6某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图中m的值为 ;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数参考答案一、选择题(每题4分,共48分)1、D【分析】根据必然事件的定义逐项进行分析即可做出判断,必然事件是一定会发生的事件【详解】A、抛掷一枚硬币,四次中有两次正面朝上是随机事件,故本选项错误;B、打开电视频道,正在播放在线体育是随机事件,故本选项错误;C、射击运动员射击一次,命中十环是随机事件,故本选项错误;D. 方程中必有实数根,是必然事件
9、,故本选项正确故选:D【点睛】解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法用到的知识点有:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、D【分析】根据二次函数的性质对A、B进行判断;根据二次函数图象上点的坐标特征对C进行判断;利用抛物线与轴交点坐标对D进行判断【详解】A、a=10,则抛物线的开口向上,所以A选项错误;B、抛物线的对称轴为直线x=1,所以B选项错误;C、当x=1时,有最小值为,所以C选项错误;D、当x=0时,y=-3,故抛物线与轴的交点为,所以D选项正确故选:D【点睛】本题考查了
10、二次函数的性质,主要涉及开口方向,对称轴,与y轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键3、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值【详解】如图过点D、C分别做DEx轴,CFy轴,垂足分别为E,FCF交反比例函数的图像于点G把x=0和y=0分别代入y=-4x+4得y=4和x=1A(1,0),B(0,4)OA=1,OB=4由ABCD是正方形,易证AOBDEABCF(AAS)DE=BF=OA=1,AE=CF=OB=4D(5,1),F(0,
11、5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案为B【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键4、C【分析】由2015年至2017年“双十一”交易额的年平均增长率为x,根据2015年及2017年该网店“双十一”全天交易额,即可得出关于x的一元二次方程,从而得出结论【详解】解:由2015年至2017年“双十一”交易额的年平均增长率为x, 根据题意得:故选C【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列一元二次方程是解题的关键5、C
12、【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到【详解】解:y=(x-1)2+1的顶点坐标为(1,1),y=x2的顶点坐标为(0,0),将抛物线y=x2向右平移1个单位,再向上平移1个单位,可得到抛物线y=(x-1)2+1故选:C【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标6、B【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案【详解】在实数|-3|,-1,0,中,|-3|=3,则-10|-3|,故最小的数是:-1故选B【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键7、C【解析】试题分析
13、:根据平行投影的特点和规律可知,(3),(4)是上午,(1),(2)是下午,根据影子的长度可知先后为(4)(3)(2)(1)故选C考点:平行投影8、C【分析】连接OD交AC于点G,根据垂径定理以及弦、弧之间的关系先得出DF=AC,再由垂径定理及推论得出DE的长以及ODAC,最后在RtDOE中,根据勾股定理列方程求得半径r,从而求出结果【详解】解:连接OD交AC于点G,ABDF,DE=EF又点是弧的中点,ODAC,AC=DF=12,DE=2设的半径为r,OE=AO-AE=r-3,在RtODE中,根据勾股定理得,OE2+DE2=OD2,(r-3)2+22=r2,解得r=的直径为3故选:C【点睛】本
14、题主要考查垂径定理及其推论,弧、弦之间的关系以及勾股定理,解题的关键是通过作辅助线构造直角三角形,是中考常考题型9、D【解析】在每个象限内的函数值y随x的增大而增大,m10,m110、D【解析】二次函数的顶点式是,,其中 是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解: 故选:D.【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等11、C【解析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对
15、称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.12、D【分析】根据切线长定理得出四边形APBC是菱形,再根据菱形的性质即可求解.【详解】解:O与PA、PB相切于点A、B,PAPB四边形APBC是平行四边形,四边形APBC是菱形,PC40,PAC140CABPAC70故选D【点睛】此题主要考查圆的切线长定理,解题的关键是熟知菱形的判定与性质.二、填空题(每题4分,共24分)13、【分析】连接AB,从图中明确,然后根据公式计算即可【详解】解:连接 , ,是直径
16、,根据同弧对的圆周角相等得:, , ,即圆的半径为2,.故答案为:.【点睛】本题考查了同弧对的圆周角相等;90的圆周角对的弦是直径;锐角三角函数的概念;圆、直角三角形的面积分式,解题的关键是熟练运用所学的知识进行解题.14、【分析】直接利用已知得出,代入进而得出答案【详解】=故填:.【点睛】此题主要考查了比例的性质,正确运用已知变形是解题关键15、1【详解】OD=2AD,ABO=90,DCOB,ABDC,DCOABO,S四边形ABCD=10,SODC=8,OCCD=8,OCCD=1,k=1,故答案为116、65【解析】试题分析:先根据圆周角定理求出A的度数,再由垂径定理求出AED的度数,进而可
17、得出结论C=25, A=C=25 O的直径AB过弦CD的中点E, ABCD,AED=90, D=9025=65考点:圆周角定理17、【分析】根据四边形内角和定理得图中四个扇形正好构成一个半径为1的圆,因此其面积之和就是圆的面积【详解】解:图中四个扇形的圆心角的度数之和为四边形的四个内角的和,且四边形内角和为360,图中四个扇形构成了半径为1的圆,其面积为:r212故答案为:【点睛】此题主要考查了四边形内角和定理,扇形的面积计算,得出图中阴影部分面积之和是半径为1的圆的面积是解题的关键18、2-x【分析】直接利用二次根式的性质化简求出答案【详解】解:x2,x-20,故答案是:2-x【点睛】此题主
18、要考查了二次根式的性质与化简,正确把握二次根式的性质是解题关键三、解答题(共78分)19、 (1)画图见解析,(2,2); (2)画图见解析,7.1【解析】(1)将ABC向下平移4个单位长度得到的A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可;根据四边形的面积等于两个三角形面积之和解答即可【详解】(1)如图所示,画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是(2,2);(2)如图所示,以B为位似中心,画出A2B2C2,使A2B2C2与ABC位似,且位似比为
19、2:1,四边形AA2C2C的面积是=12故答案为:(1)(2,2);(2)7.1【点睛】本题考查了作图位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解答本题的关键20、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论【详解】解:(1)抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),将A(0,3),B(-1,0)代入得:, 解得: 则抛物线解
20、析式为y=-x2+2x+3; (2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4), 对称轴与x轴交于点E, DE=4,OE=1, B(1,0),BO=1, BE=2, 在RtBED中,根据勾股定理得:BD=2(3)抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)BC=3(-1)=4的面积为,BC=4解得:=2或-2点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、勾股定理和三角形的面积公式是解决此题的关键21、(1)4;(2).【分析】(1)先计算乘
21、方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式=4;(2), ,.【点睛】此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.22、 (1) 20米;(2) 25米【分析】(1)BDC=45,可得DC=BC=20m,;(2)设DC=BC=xm,可得tan50=1.2,解得x的值即可得建筑物BC的高【详解】解:(1)BDC=45,DC=BC=20m,答:建筑物BC的高度为20m;(2)设DC=BC=xm,根据题意可得:tan50=1.2,解得:x=25,答:建筑物BC的
22、高度为25m【点睛】本题考查解直角三角形的应用23、(1)200;72(2)60(人),图见解析(3)1050人【分析】(1)由A类有20人,所占扇形的圆心角为36,即可求得这次被调查的学生数,再用360乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得【详解】(1)A类有20人,所占扇形的圆心角为36,这次被调查的学生共有:20200(人);选“D一园艺种植”的学生人数所占圆心角的度数是36072,故答案为:200、72;(2)C项目对应人数为:20020804060(人);补充如图(3)15001050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、(1)k=1,Q(-1,-1)(2)【分析】(1)将点P代入直线中即可求出m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有限责任公司股东合作协议模板
- 水杯外观标准培训
- 心衰的护理新进展
- 怎样做讲课课件
- 电焊中级培训
- 多功能电动护理床
- 护理创新项目比赛
- 《做个家庭小主人》
- 中国旗袍培训
- 车间班组年度工作总结
- 廉洁行医专题培训课件
- 南通市如东县医疗卫生单位招聘事业编制工作人员笔试真题2024
- 历史●甘肃卷丨2024年甘肃省普通高中学业水平等级性考试高考历史真题试卷及答案
- 2024年杭州市临安区事业单位统一招聘真题
- C语言程序设计基础知到智慧树期末考试答案题库2025年石河子大学
- 党建考试试题及答案国企
- 小学图书馆面试题及答案
- 客运行业事故隐患内部报告奖励管理制度2025
- 快消品包装2025年可再生资源利用现状与前景报告
- 纵隔肿物护理
- 房屋建筑与市政工程重大事故安全隐患判定标准解读课件
评论
0/150
提交评论