湖南省长沙市广益实验中学2023学年数学九年级第一学期期末预测试题含解析_第1页
湖南省长沙市广益实验中学2023学年数学九年级第一学期期末预测试题含解析_第2页
湖南省长沙市广益实验中学2023学年数学九年级第一学期期末预测试题含解析_第3页
湖南省长沙市广益实验中学2023学年数学九年级第一学期期末预测试题含解析_第4页
湖南省长沙市广益实验中学2023学年数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1如图,是等边三角形,被一矩形所截,被截成三等分,EHBC,则四边形的面积是的面积的:( )ABCD2把抛物线向右平移个单位,再向上平移个单位,得到的抛物线是( )ABCD3如图,直线/,若AB6,BC9,EF6,则DE( )A4B6C7D94

2、已知点P(x,y)在第二象限,|x|6,|y|8,则点P关于原点的对称点的坐标为( )A(6,8)B(6,8)C(6,8)D(6,8)5已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( )ABCD6如图,在O中,AB为直径,点M为AB延长线上的一点,MC与O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MCMDAC,连接AD现有下列结论:MD与O相切;四边形ACMD是菱形;ABMO;ADM120,其中正确的结论有()A4个B3个C2个D1个7如图,在矩形ABCD中,AB=4,AD=3,若以A为圆心,4为半径作A.下列四个点中,

3、在A外的是( )A点AB点BC点CD点D8如图,RtABC中,B90,AB3,BC2,则cosA( )ABCD9如图,点O是ABC的内切圆的圆心,若A80,则BOC为( )A100B130C50D6510如果一个扇形的弧长是,半径是6,那么此扇形的圆心角为()A40B45C60D80二、填空题(每小题3分,共24分)11从这九个自然数中,任取一个数是偶数的概率是_12一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是_ cm(结果保留)13如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数

4、表达式为_(不要求写出自变量x的取值范围)14如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为_15已知线段a4 cm,b9 cm,则线段a,b的比例中项为_cm16长为的梯子搭在墙上与地面成角,作业时调整为角(如图所示),则梯子的顶端沿墙面升高了_.17如图,在ABC中,P是AB边上的点,请补充一个条件,使ACPABC,这个条件可以是:_(写出一个即可),18ABC中,C=90,AC=6,BC=8,则sinA的值为_三、解答题(共66分)19(10分)如图1,在平面直角坐标

5、系中,已知抛物线与轴交于,两点,与轴交于点(1)求抛物线的函数表达式;(2)若点P是位于直线BC上方抛物线上的一个动点,求BPC面积的最大值;(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标20(6分)一个不透明的箱子里放有2个白球,1个黑球和1个红球,它们除颜色外其余都相同.箱子里摸出1个球后不放回,摇匀后再摸出1个球,求两次摸到的球都是白球的概率。(请用列表或画树状图等方法)21(6分)已知:如图,在平行四边形ABCD中,O为对

6、角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF(1)求证:DOEBOF(2)当DOE等于多少度时,四边形BFDE为菱形?请说明理由22(8分)如图,抛物线yx2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3)(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MNy轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由23(8分)请阅读下面材料:问题:已知方程x1+x-30,求一个一元二次方程,使

7、它的根分别是已知方程根的一半解:设所求方程的根为y,y=,所以x1y把x1y代入已知方程,得(1y)1+1y-30化简,得4y1+1y-30故所求方程为4y1+1y-30这种利用方程根的代换求新方程的方法,我们称为“换根法”请用阅读材料提供的“换根法”解决下列问题:(1)已知方程1x1-x-150,求一个关于y的一元二次方程,使它的根是已知方程根的相反数,则所求方程为:_(1)已知方程ax1+bx+c0(a0)有两个不相等的实数根,求一个关于y的一元二次方程,使它的根比已知方程根的相反数的一半多124(8分)下面是一位同学做的一道作图题:已知线段、(如图所示),求作线段,使.他的作法如下:1.

8、以下为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作,交于点.所以:线段_就是所求的线段.(1)试将结论补完整:线段_就是所求的线段.(2)这位同学作图的依据是_;(3)如果,试用向量表示向量.25(10分)某商场经销种高档水果 ,原价每千克元,连续两次降价后每千克元,若每次下降的百分率相同求每次下降的百分率26(10分)某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图和图两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图的统计图补充完整;(3

9、)通过计算说明,哪个班的获奖率高?参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题意,易证AEHAFGABC,利用相似比,可求出SAEH、SAFG与SABC的面积比,从而表示出SAEH、SAFG,再求出四边形EFGH的面积即可【详解】在矩形中FGEH,且EHBC,FGEHBC,AEHAFGABC,AB被截成三等分,SAEH:SABC=1:9,SAFG:SABC=4:9,SAEH=SABC,SAFG=SABC,S四边形EFGH= SAFGSAEH=SABCSABC=SABC.故选:B【点睛】本题考查相似三角形的判定与性质,明确面积比等于相似比的平方是解题的关键.2、A【分析】根据抛

10、物线平移的规律:左加右减,上加下减,即可得解.【详解】由已知,得经过平移的抛物线是故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.3、A【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可.【详解】解:/, ,AB=6,BC=9,EF=6,DE=4故选:A【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键.4、D【分析】根据P在第二象限可以确定x,y的符号,再根据|x|=6,|y|=8就可以得到x,y的值,得出P点的坐标,进而求出点P关于原点的对称点的坐标【详解】|x|=6,|y|=8,x=6,y=8,点P在第二象限,x0,y0,x=6,y

11、=8,即点P的坐标是(6,8),关于原点的对称点的坐标是(6,8),故选:D【点睛】主要考查了平面直角坐标系中各个象限的点的坐标的符号特点和对称点的规律解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数5、C【分析】直接利用概率公式求解【详解】10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是. 故选C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数6、

12、A【详解】如图,连接CO,DO,MC与O相切于点C,MCO=90,在MCO与MDO中,MCOMDO(SSS),MCO=MDO=90,CMO=DMO,MD与O相切,故正确;在ACM与ADM中,ACMADM(SAS),AC=AD,MCMDAC=AD,四边形ACMD是菱形,故正确;如图连接BC,AC=MC,CAB=CMO,又AB为O的直径,ACB=90,在ACB与MCO中,ACBMCO(SAS),ABMO,故正确;ACBMCO,BC=OC,BC=OC=OB,COB=60,MCO=90,CMO=30,又四边形ACMD是菱形,CMD=60,ADM120,故正确;故正确的有4个.故选A.7、C【解析】连接

13、AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,圆A的半径是4,AB=4,AD=3,由勾股定理可知对角线AC=5,D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.8、D【分析】根据勾股定理求出AC,根据余弦的定义计算得到答案【详解】由勾股定理得,AC,则cosA,故选:D【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做A的余弦是解题的关键9、B【分析】根据三角形的内切圆得出OBC=ABC,OCB=ACB,根据三角形的内角和定理求出ABC+ACB的度数,进一步求出OBC+O

14、CB的度数,根据三角形的内角和定理求出即可【详解】点O是ABC的内切圆的圆心,OBC=ABC,OCB=ACBA=80,ABC+ACB=180A=100,OBC+OCB=(ABC+ACB)=50,BOC=180(OBC+OCB)=18050=130故选B【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出OBC+OCB的度数是解答此题的关键10、A【解析】试题分析:弧长,圆心角故选A二、填空题(每小题3分,共24分)11、【分析】由从1到9这九个自然数中任取一个,是偶数的有4种情况,直接利用概率公式求解即可求得答案【详解】解:这九个自然数中任取一个有9种情况

15、,其中是偶数的有4种情况,从1到9这九个自然数中任取一个,是偶数的概率是:故答案为:【点睛】此题考查了概率公式的应用用到的知识点为:概率所求情况数与总情况数之比12、15【分析】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解【详解】解:圆锥的侧面积=35=15cm2故答案为:15【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键13、yx215x【分析】由AB边长为x米,根据已知可以推出BC=(30-x),然后根据矩形的面积公式即可求出函数关系式【详解】AB边长为x米,而菜园ABCD是矩形菜园,BC=(30-x),菜园的面积=ABBC= (30-x)x,则菜园的面积y(单位:米2)与x

16、(单位:米)的函数关系式为:yx215x,故答案为yx215x.【点睛】本题考查了二次函数的应用,正确分析,找准各量间的数量关系列出函数关系式是解题的关键.14、【解析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果【详解】解:,底面周长,将圆锥侧面沿剪开展平得一扇形,此扇形的半径,弧长等于圆锥底面圆的周长设扇形圆心角度数为,则根据弧长公式得:,即展开图是一个半圆,点是展开图弧的中点,连接,则就是蚂蚁爬行的最短距离,在中由勾股定理得,即蚂蚁爬行的最短距离是故答案为:【点睛】考查了平面展开最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇

17、形的半径等于圆锥的母线长本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决15、6【分析】设比例中项为c,得到关于c的方程即可解答.【详解】设比例中项为c,由题意得: ,c1=6,c2=-6(不合题意,舍去)故填6.【点睛】此题考查线段成比例,理解比例中项的含义即可正确解答.16、22【详解】由题意知:平滑前梯高为4sin45=4=平滑后高为4sin60=4=升高了m故答案为.17、ACP=B(或)【分析】由于ACP与ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件【详解】解:PAC=CAB,当ACP=B

18、时,ACPABC;当时,ACPABC故答案为:ACP=B(或)【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似18、【分析】根据勾股定理及三角函数的定义直接求解即可;【详解】如图,sinA,故答案为:【点睛】本题考查了三角函数的定义及勾股定理,熟练掌握三角函数的定义是解题的关键.三、解答题(共66分)19、(1);(2)BPC面积的最大值为 ;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)【分析】(1)抛物线的表达式为:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求

19、解;(2)利用SBPC=PHOB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D为顶点的三角形与ABC相似有两种情况,分别求解即可;(4)作点E关于y轴的对称点E(-2,9),作点F(2,9)关于x轴的对称点F(3,-8),连接E、F分别交x、y轴于点M、N,此时,四边形EFMN的周长最小,即可求解【详解】解:(1)把,分别代入得: 抛物线的表达式为:(2)如图,过点P作PHOB交BC于点H令x=0,得y=5C(0,5),而B(5,0)设直线BC的表达式为: 设,则 BPC面积的最大值为(3)如图, C(0,5),B(5,0)OC=OB,OBC=OCB=45AB=6,B

20、C=要使BCD与ABC相似则有或 当时则 D(0,) 当时,CD=AB=6,D(0,1)即:D的坐标为(0,1)或(0,) (4)E为抛物线的顶点,E(2,9)如图,作点E关于y轴的对称点E(2,9),F(3,a)在抛物线上,F(3,8),作点F关于x轴的对称点F(3,8),则直线E F与x轴、y轴的交点即为点M、N 设直线E F的解析式为:则直线E F的解析式为: ,0),N(0,)【点睛】本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握20、【分析】画出树形图,即可求出两次摸到的球都是白球的概率【详解】解:画树状图如

21、下:摸得两次白球的概率=【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比21、(1)证明见解析;(2)当DOE=90时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出DOEBOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案试题解析:(1)在ABCD中

22、,O为对角线BD的中点,BO=DO,EDB=FBO,在EOD和FOB中,DOEBOF(ASA);(2)当DOE=90时,四边形BFDE为菱形,理由:DOEBOF,OE=OF,又OB=OD,四边形EBFD是平行四边形,EOD=90,EFBD,四边形BFDE为菱形考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定22、 (1) yx24x+1;(2);(1)见解析.【分析】(1)利用待定系数法进行求解即可;(2)设点M的坐标为(m,m24m+1),求出直线BC的解析,根据MNy轴,得到点N的坐标为(m,m+1),由抛物线的解析式求出对称轴,继而确定出1m1,用含m的式子表示出MN,继而利用

23、二次函数的性质进行求解即可;(1)分AB为边或为对角线进行讨论即可求得.【详解】(1)将点B(1,0)、C(0,1)代入抛物线yx2+bx+c中,得:,解得:,故抛物线的解析式为yx24x+1;(2)设点M的坐标为(m,m24m+1),设直线BC的解析式为ykx+1,把点B(1,0)代入ykx+1中,得:01k+1,解得:k1,直线BC的解析式为yx+1,MNy轴,点N的坐标为(m,m+1),抛物线的解析式为yx24x+1(x2)21,抛物线的对称轴为x2,点(1,0)在抛物线的图象上,1m1线段MNm+1(m24m+1)m2+1m(m)2+,当m时,线段MN取最大值,最大值为;(1)存在点F

24、的坐标为(2,1)或(0,1)或(4,1)当以AB为对角线,如图1,四边形AFBE为平行四边形,EAEB,四边形AFBE为菱形,点F也在对称轴上,即F点为抛物线的顶点,F点坐标为(2,1);当以AB为边时,如图2,四边形AFBE为平行四边形,EFAB2,即F2E2,F1E2,F1的横坐标为0,F2的横坐标为4,对于yx24x+1,当x0时,y1;当x4时,y1616+11,F点坐标为(0,1)或(4,1),综上所述,F点坐标为(2,1)或(0,1)或(4,1)【点睛】本题考查了二次函数的综合题,涉及了待定系数法,二次函数的性质,平行四边形的性质,菱形的判定等,综合性较强,有一定的难度,熟练掌握相关知识,正确进行分类讨论是解题的关键.23、(1)1y1+y-150;(1)【分析】(1)利用题中解法,设所求方程的根为y,则y=-x,所以x=-y,然后把x=-y代入已知方程整理后即可得到结果;(1)设所求方程的根为y,则y=(x0),于是x=4-1y(y0),代入方程ax1+bx+c=0整理即可得【详解】解:(1)设所求方程的根为y,则y=-x,所以x=-y,把x=-y代入1x1-x-150,整理得,1y1+y-150,故答案为:1y1+y-150;(1)设所求方程的根为y,则y=(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论