




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,已知矩形ABCD的对角线AC的长为8,连接矩形ABCD各边中点E、F、G、H得到四边形EFGH,则四边形EFGH的周长为( )A12B16C24D322如图的中,且为上一点今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:(甲)连
2、接,作的中垂线分别交、于点、点,则、两点即为所求(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A两人皆正确B两人皆错误C甲正确,乙错误D甲错误,乙正确3在平面直角坐标系中,以原点O为圆心的O交x轴正半轴为M,P为圆上一点,坐标为(,1),则cosPOM=( )ABCD4的倒数是( )ABCD5如图,AB为O的直径,点C,D在O上若AOD=30,则BCD等于( )A75B95C100D1056如图,在一个周长为10 m的长方形窗户上钉上一块宽为1 m的长方形遮阳布,使透光部分正好是一个正方形,则钉好后透光部分的面积为( )A9
3、m2B25 m2C16 m2D4 m27如图,抛物线yax2+bx+c(a0)的对称轴为直线x1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:b24ac0;方程ax2+bx+c0的两个根是x11,x23;2a+b0;当y0时,x的取值范围是1x3;当x0时,y随x增大而减小其中结论正确的个数是()A4个B3个C2个D1个8如图,二次函数y=ax1+bx+c的图象与x轴交于点A(1,0),B(3,0)下列结论:1ab=0;(a+c)1b1;当1x3时,y0;当a=1时,将抛物线先向上平移1个单位,再向右平移1个单位,得到抛物线y=(x1)11其中正确的是()ABCD9如图,已
4、知AB、AC都是O的弦,OMAB,ONAC,垂足分别为M,N,若MN,那么BC等于()A5BC2D10在中,则的正切值为( )ABCD二、填空题(每小题3分,共24分)11在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是_12如图,一块含30的直角三角板ABC(BAC30)的斜边AB与量角器的直径重合,与点D对应的刻度读数是54,则BCD的度数为_度13如图,在正方形中,将绕点顺时针旋转得到,此时与交于点,则的长度为_.14如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m因为上游水库泄洪,水面宽度变为6m,则水面上涨的高度为_m
5、15如图,在中,若为斜边上的中线,则的度数为_16如图,平面直角坐标系中,P与x轴分别交于A、B两点,点P的坐标为(3,1),AB2 将P沿着与y轴平行的方向平移,使P与轴相切,则平移距离为_ 17某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨若平均每月增长率是,则可列方程为_18边长为1的正方形,在边上取一动点,连接,作,交边于点,若的长为,则的长为_三、解答题(共66分)19(10分)数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在4070元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱现
6、该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?20(6分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2)(1)求反比例函数和一次函数的解析式;(2)求AOC的面积;(3)直接写出时的x的取值范围 (只写答案)21(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1)(1)画出ABC关于x轴对称的A1B1C1;(2)画出ABC绕点O逆时针旋转90后的A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留)22(8分)如图,A
7、BC的角平分线BD=1,ABC=120,A、C所对的边记为a、c.(1)当c=2时,求a的值;(2)求ABC的面积(用含a,c的式子表示即可);(3)求证:a,c之和等于a,c之积.23(8分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为8千米,仰角为30火箭继续直线上升到达点处,此时海岸边处的雷达测得处的仰角增加15,求此时火箭所在点处与发射站点处的距离(结果精确到0.1千米)(参考数据:,)24(8分)如图,在平面直角坐标系xOy中,A(2,0)
8、,B(0,3),C(4,1)以原点O为旋转中心,将ABC顺时针旋转90得到ABC,其中点A,B,C旋转后的对应点分别为点A,B,C(1)画出ABC,并写出点A,B,C的坐标;(2)求经过点B,B,A三点的抛物线对应的函数解析式25(10分)如图,在ABC中,C90,AC2cm,AB3cm,将ABC绕点B顺时针旋转60得到FBE,求点E与点C之间的距离26(10分)有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.(1)如图1,BD平分ABC,ADBC,求证:四边形ABCD为“和睦四边形”;(2)如图2,直线与x轴、y轴分别
9、交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;(3)如图3,抛物线与轴交于A、B两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D当四边形COBD为“和睦四边形”,且CD=OC抛物线还满足:;顶点D在以AB为直径的圆上. 点是抛物线上任意一点,且.若恒成立,求m的最小值.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,
10、而矩形对角线是相等的,都为8,那么就求得了各边长,让各边长相加即可【详解】解:H、G是AD与CD的中点,HG是ACD的中位线,HG=AC=4cm,同理EF=4cm,根据矩形的对角线相等,连接BD,得到:EH=FG=4cm,四边形EFGH的周长为16cm故选:B【点睛】本题考查了中点四边形解题时,利用了“三角形中位线等于第三边的一半”的性质2、A【分析】如图1,根据线段垂直平分线的性质得到,则根据“”可判断,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形为平行四边形,则根据平行四边形的性质得到,则根据“”可判断,则可对乙进行判断【详解】解:如图1,垂直平分,而,所以甲正确;如图2
11、,四边形为平行四边形,而,所以乙正确故选:A【点睛】本题考查作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定3、A【解析】试题分析:作PAx轴于A,点P的坐标为(,1),OA=,PA=1,由勾股定理得,OP=2,cosPOM=,故选A考点:锐角三角函数4、A【分析】根据乘积为1的两个数互为倒数进行解答即可【详解】解:1=1,的倒数是1故选A【点睛】本题考查了倒数的概念,熟记倒数的
12、概念是解答此题的关键5、D【解析】试题解析:连接故选D.点睛:圆内接四边形的对角互补.6、D【解析】根据矩形的周长=(长+宽)1,正方形的面积=边长边长,列出方程求解即可【详解】解:若设正方形的边长为am,则有1a+1(a+1)=10,解得a=1,故正方形的面积为4m1,即透光面积为4m1故选D【点睛】此题考查了一元一次方程的应用,主要考查了长方形的周长及正方形面积的求法,属于基础题,难度一般7、B【分析】利用抛物线与x轴的交点个数可对进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对进行判断;由对称轴方程得到b2a,则可对进行判断;根据抛物线在x轴上方所对应的自变
13、量的范围可对进行判断;根据二次函数的性质对进行判断【详解】函数图象与x轴有2个交点,则b24ac0,故错误;函数的对称轴是x1,则与x轴的另一个交点是(3,0),则方程ax2+bx+c0的两个根是x11,x23,故正确;函数的对称轴是x1,则2a+b0成立,故正确;函数与x轴的交点是(1,0)和(3,0)则当y0时,x的取值范围是1x3,故正确;当x1时,y随x的增大而减小,则错误故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同
14、决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点8、D【解析】分析:根据二次函数图象与系数之间的关系即可求出答案详解:图象与x轴交于点A(1,0),B(3,0),二次函数的图象的对称轴为x=1,=1,1a+b=0,故错误;令x=1,y=ab+c=0,a+c=b,(a+c)1=b1,故错误;由图可知:当1x3时,y0,故
15、正确;当a=1时,y=(x+1)(x3)=(x1)14将抛物线先向上平移1个单位,再向右平移1个单位,得到抛物线y=(x11)14+1=(x1)11,故正确;故选:D点睛:本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型9、C【解析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是ABC的中位线,由三角形的中位线定理即可得出结论【详解】解:OMAB,ONAC,垂足分别为M、N,M、N分别是AB与AC的中点,MN是ABC的中位线,BC2MN2,故选:C【点睛】本题考查垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧
16、是解答此题的关键10、B【解析】根据锐角三角函数的定义求出即可【详解】解:在RtABC中,C=90,AC=1,BC=3,B的正切值为=,故选B.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键二、填空题(每小题3分,共24分)11、(3,2)【解析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案【详解】解:平面直角坐标系内两点关于原点对称横纵坐标互为相反数,点(3,2)关于原点对称的点的坐标是(3,2),故答案为(3,2)【点睛】本题主要考查了平面直角坐标系内点的坐标位置关系,难度较小12、1【分析】先利用圆周角定理的推论判断点C、D在同
17、一个圆上,再根据圆周角定理得到ACD=27,然后利用互余计算BCD的度数.【详解】解:C90,点C在量角器所在的圆上点D对应的刻度读数是54,即AOD54,ACDAOD27,BCD90271故答案为1【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.13、【分析】利用正方形和旋转的性质得出AD=AE,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可【详解】解:由题意可得出:BDC=45,DAE=90,DEA=45,AD=AE,在正方形ABCD中,A
18、D=1,AB=AB=1,BD=,AD=,在RtDAE中,DE=故答案为:.【点睛】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出AD的长是解题关键14、.【分析】先建立适当的平面直角坐标系,然后根据题意确定函数解析式,最后求解即可.【详解】解:如图:以水面为x轴、桥洞的顶点所在直线为y轴建立平面直角坐标系,根据题意,得A(5,0),C(0,5),设抛物线解析式为:yax2+5,把A(5,0)代入,得a ,所以抛物线解析式为:yx2+5,当x3时,y,所以当水面宽度变为6m,则水面上涨的高度为m故答案为【点睛】本题考查了二次函数的应用,建立适当的平面直角坐标系是解决本
19、题的关键.15、【分析】先根据直角三角形的性质得出AD=CD,进而根据等边对等角得出,再根据即得【详解】为斜边上的中线AD=CD故答案为:【点睛】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半16、1或1【分析】过点P作PCx轴于点C,连接PA,由垂径定理得P的半径为2,因为将P沿着与y轴平行的方向平移,使P与轴相切,分两种情况进行讨论求值即可由【详解】解:过点P作PCx轴于点C,连接PA,AB,点P的坐标为(1,1),PC=1,将P沿着与y轴平行的方向平移,使P与轴相切,当沿着y轴的负方向平移,则根据切线定理得:PC=PA=2即可,因此平移的距
20、离只需为1即可;当沿着y轴正方向移动,由可知平移的距离为即可故答案为1或1【点睛】本题主要考查圆的基本性质及切线定理,关键是根据垂径定理得到圆的半径,然后进行分类讨论即可17、【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量(1+增长率).18、或 【分析】根据正方形的内角为90,以及同角的余角相等得出三角形的两个角相等,从而推知ABEECF,得出,代入数值得到关于CE的一元二次方程,求解即可【详解】解:正方形ABCD,
21、B=C,BAE+BEA=90,EFAE,BEA+CEF=90, BAE=CEF,ABEECF,解得,CE=或故答案为:或【点睛】考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大三、解答题(共66分)19、当每箱牛奶售价为50元时,平均每天的利润为900元.【解析】试题分析:本题可设每箱牛奶售价为x元,则每箱赢利(x-40)元,平均每天可售出(30+3(70-x))箱,根据每箱的盈利销售的箱数=销售这种牛奶的盈利,据此即可列出方程,求出答案试题解析:设每箱售价为x元,根据题意得:(x-40)30+3(7
22、0-x)=900 化简得:x-120 x+3500=0 解得:x1=50或x2=70(不合题意,舍去) x=50 答:当每箱牛奶售价为50元时,平均每天的利润为900元20、(1),;(2)C(-3,0), S=6;(3)或【分析】(1)根据题意把A的坐标代入反比例函数的图像与一次函数,分别求出k和b,从而即可确定反比例函数和一次函数的解析式;(2)由题意先求出C的坐标,再利用三角形面积公式求出AOC的面积;(3)根据函数的图象即可得出一次函数的值大于反比例函数的值的x的取值范围【详解】解:(1)将点A(1,4)代入反比例函数的图像与一次函数,求得以及,所以反比例函数和一次函数的解析式分别为:
23、和;(2)因为C在一次函数的图象上以及x轴上,所以求得C坐标为(-3,0),则有OC=3, AOC以OC为底的高为4,所以AOC的面积为:;(3)由可知一次函数的值大于反比例函数的值,把B(m,-2)代入,得出m=-2,即B(-2,-2),此时当或时,一次函数的值大于反比例函数的值【点睛】本题考查一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小,解题的关键是确定交点的坐标21、(1)作图见解析;(2)作图见解析;(3)2.【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=,由此计算即可;【
24、详解】(1)ABC关于x轴对称的A1B1C1如图所示;(2)ABC绕点O逆时针旋转90后的A2B2C2如图所示;(3)BC扫过的面积=2【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键22、 (1)a=2;(2)或;(3)见解析.【分析】(1)过点作于点,由角平分线定义可得度数,在中,由,可得,由,得点与点重合,从而,由此得解;(2)范围内两种情形:情形1:过点作于点,过点作延长线于点,情形2:过点作于点交AB的延长线于点H,再由三角形的面积公式计算即可;(3)由(2)的结论即可求得结果.【详解】(1)过点作于点,平分,在中,点与点重合,;(2)情形1:过点作于点,过点作延长线于点,平分,在中,在中,;情形2:过点作于点交AB的延长线于点H,则,在中,于是;(3)证明:由(2)可得=,即=,则a+c=ac【点睛】此题主要考查学生对解直角三角形的理解及运用,掌握三角函数关系式的恒等变换,正弦定理和余弦定理以及三角形面积的解答方法是解决此题的关键23、此时火箭所在点处与发射站点处的距离约为【解析】利用已知结合锐角三角函数关系得出的长【详解】解:如图所示:连接,由题意可得:,在直角中,在直角中,答:此时火箭所在点处与发射站点处的距离约为【点睛】本题考查解直角三角形的应用仰角俯角问题,要求学生能借助仰角构造
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.13 近似数-数学华东师大版(2024)七年级上册随堂小练(含答案)
- 喜欢我自己教学课件
- 灯具组装自动化生产线工艺考核试卷及答案
- 镍钴矿浸出液氧化处理工艺考核试卷及答案
- 特种电源基础知识培训课件
- 藤制品防磨损工艺考核试卷及答案
- 2025年呼吸内科主治医师考试《专业实践能力》模拟题及答案
- 钢铁冶金过程气体监测方案-炼钢篇
- 铁路桥梁施工进度控制工艺考核试卷及答案
- 离子注入能量稳定性评估工艺考核试卷及答案
- 广东省佛山市顺德区2023-2024学年七年级(上)期末数学试卷(含答案)
- 变配电运维职业技能(中级)等级培训题库
- 矿山隐蔽致灾普查治理报告
- 实心球课件教学课件
- 玻璃体切割手术治疗2型糖尿病视网膜病变专家共识
- 大型养路机械司机(打磨车)高级工技能鉴定考试题库(含答案)
- 部编版小学语文四年级语文阅读理解练习试题含答案(全册)
- 马凡综合征个案护理
- 2024四年级上册语文开学第一课教学课件
- 慢性肺源性心脏病的护理(内科护理学第七版)
- 铁路120型货车空气控制阀
评论
0/150
提交评论