




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,已知抛物线y1x11x,直线y11xb相交于A,B两点,其中点A的横坐标为1当x任取一值时,x对应的函数值分别为y1,y1,取m(|y1y1|y1y1)则( )A当x1时,my1Bm随x的增大而减小C当m1时,x0Dm12若,则的值为( )ABCD
2、3一元二次方程x28x1=0配方后为( )A(x4)2=17B(x4)2=15C(x4)2=17D(x4)2=17或(x4)2=174如果一个正多边形的中心角为60,那么这个正多边形的边数是( )A4B5C6D75如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为()ABCD6下列二次根式是最简二次根式的是( )ABCD7如图,四边形ABCD中,A=90,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )A8B6C4D58已知关于的方程(1)(2)(3)(4),其中一元
3、二次方程的个数为( )个A1B2C3D49如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()ABCD10二次函数yax2+bx+c(a1)的图象如图所示,其对称轴为直线x1,与x轴的交点为(x1,1)、(x2,1),其中1x21,有下列结论:b24ac1;4a2b+c1;3x12;当m为任意实数时,abam2+bm;3a+c1其中,正确的结论有( )ABCD二、填空题(每小题3分,共24分)11数据1、2、3、2、4的众数是_12在ABC中,C90,cosA,则tanA等于 13如图,在ABC中DEBC,点D在AB边上,点E在AC边上,且AD:DB2:3,四边形DBCE的面积是1
4、0.5,则ADE的面积是_14如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将ABC绕点O逆时针旋转,每秒旋转60,则第2018秒时,点A的坐标为 15如图抛物线与轴交于,两点,与轴交于点,点是抛物线对称轴上任意一点,若点、分别是、的中点,连接,则的最小值为_16如图在圆心角为的扇形中,半径,以为直径作半圆.过点作的平行线交两弧分别于点,则图中阴影部分的面积是_.17在RtABC中,AC:BC1:2,则sinB_.18若是方程的一个根则的值是_三、解答题(共66分)19(10分)已知抛物线的图象经过点(1,0),点(3,0);(1)求抛物线函数解析式;(2
5、)求函数的顶点坐标.20(6分)如图,在RtABC中,BAC90,D是BC的中点,E是AD的中点,过点A作AFBC交BE的延长线于点F(1)求证:四边形ADCF是菱形;(3)若AC6,AB8,求菱形ADCF的面积21(6分)已知,为的直径,过点的弦半径,若求的度数22(8分)如图,在中,弦垂直于直径,垂足为,连结,将沿翻转得到,直线与直线相交于点(1)求证:是的切线;(2)若为的中点,求证:四边形是菱形;若,求的半径长23(8分)小明想要测量一棵树DE的高度,他在A处测得树顶端E的仰角为30,他走下台阶到达C处,测得树的顶端E的仰角是60已知A点离地面的高度AB2米,BCA30,且B,C,D三
6、点在同一直线上求树DE的高度;24(8分)解方程:(l)(2)(配方法)25(10分)如图,在ABC中,sinB=,cosC=,AB=5,求ABC的面积26(10分)如图,在矩形ABCD中,BC60cm动点P以6cm/s的速度在矩形ABCD的边上沿AD的方向匀速运动,动点Q在矩形ABCD的边上沿ABC的方向匀速运动P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动设运动的时间为t(s),PDQ的面积为S(cm2),S与t的函数图象如图所示(1)AB cm,点Q的运动速度为 cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点
7、O为圆心的O始终与边AD、BC相切,当点P到达终点D时,运动同时停止当点O在QD上时,求t的值;当PQ与O有公共点时,求t的取值范围参考答案一、选择题(每小题3分,共30分)1、D【分析】将点的横坐标代入,求得,将,代入求得,然后将与联立求得点的坐标,然后根据函数图象化简绝对值,最后根据函数的性质,可得函数的增减性以及的范围【详解】将代入,得,点的坐标为将,代入,得,将与联立,解得:,或,点的坐标为当x1时,m(|y1y1|y1y1)= (y1y1y1y1)= y1,故错误;当时,当时,当时,当x1时,m随x的增大而减小,故错误;令,代入,求得:或(舍去),令,代入,求得:,当m1时,x0或,
8、故错误m=,画出图像如图,D正确故选【点睛】本题主要考查的是二次函数与一次函数的综合,根据函数图象比较出与的大小关系,从而得到关于x的函数关系式,是解题的关键2、D【分析】先利用平方差公式得到=(a+b)(a-b),再把,整体代入即可【详解】解:=(a+b)(a-b)=故答案为D【点睛】本题考查了平方差公式,把a+b和a-b看成一个整体是解题的关键3、A【解析】x28x1=0,移项,得x28x=1,配方,得x28x+42=1+42,即(x4)2=17.故选A.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4、C【解
9、析】试题解析:这个多边形的边数为: 故选C.5、C【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DCx轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标【详解】RtOAB的顶点A(2,4)在抛物线上,4=4a,解得a=1,抛物线为,点A(2,4),B(2,0),OB=2,将RtOAB绕点O顺时针旋转,得到OCD,D点在y轴上,且OD=OB=2,D(0,2),DCOD,DCx轴,P点的纵坐标为2,代入,得,解得 P故答案为:.【点睛】考查二次函数图象上点的坐标特征, 坐标与图形变化-旋转,掌握旋转的性质是解题的关键.6、C【解析】根据最简二次根式的定义逐项
10、分析即可.【详解】A. =3,故不是最简二次根式;B. =,故不是最简二次根式;C. ,是最简二次根式;D. =,故不是最简二次根式;故选C.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,象这样的二次根式叫做最简二次根式.7、D【分析】根据三角形中位线定理可知EF=DN,求出DN的最大值即可【详解】解:如图,连结DN,DE=EM,FN=FM,EF=DN,当点N与点B重合时,DN的值最大即EF最大,在RtABD中,A=90,AD=6,AB=8,EF的最大值=BD=1故选:D【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是
11、中位线定理的灵活应用,学会转化的思想,属于中考常考题型8、C【分析】根据一元二次方程的定义逐项判断即可【详解】解:(1)ax2+x+1=0中a可能为0,故不是一元二次方程;(2)符合一元二次方程的定义,故是一元二次方程;(3),去括号合并后为,是一元二次方程;(4)x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,故选:C【点睛】本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以9、A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中【详解】从上面看易得上
12、面一层有3个正方形,下面左边有一个正方形故选A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图10、A【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决【详解】二次函数y=ax2+bx+c(a1)的图象与x轴有两个交点,b24ac1,故正确;该函数图象的对称轴是x=1,当x=1时的函数值小于1,x=2时的函数值和x=1时的函数值相等,都小于1,4a2b+c1,故错误;该函数图象的对称轴是x=1,与x轴的交点为(x1,1)、(x2,1),其中1x21,3x,12,故正确;当x=1时,该函数取得最小值,当m为任意实数时,abam2+bm,故正确;1
13、,b=2ax=1时,y=a+b+c1,3a+c1,故错误故选:A【点睛】本题考查了二次函数图象上点的坐标特征、二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答二、填空题(每小题3分,共24分)11、1【分析】根据众数的定义直接解答即可【详解】解:数据1、1、3、1、4中,数字1出现了两次,出现次数最多,1是众数,故答案为:1【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数12、.【解析】试题分析:在ABC中,C90,cosA,.可设.根据勾股定理可得.考点:1.锐角三角函数定义;2.勾股定理.13、1
14、【分析】由AD:DB1:3,可以得到相似比为1:5,所以得到面积比为4:15,设ADE的面积为4x,则ABC的面积为15x,故四边形DBCE的面积为11x,根据题意四边形的面积为10.5,可以求出x,即可求出ADE的面积【详解】DEBC,AD:DB=1:3相似比=1:5面积比为4:15设ADE的面积为4x,则ABC的面积为15x,故四边形DBCE的面积为11x11x=10.5,解得x=0.5ADE的面积为:40.5=1故答案为:1【点睛】本题主要考查了相似三角形,熟练面积比等于相似比的平方以及准确的列出方程是解决本题的关键14、【分析】ABC绕点O逆时针旋转一周需6秒,而20186336+2,
15、所以第2018秒时,点A旋转到点A,AOA120,OAOA3,作AHx轴于H,然后通过解直角三角形求出AH和OH即可得到A点的坐标【详解】解:360606,20186336+2,第2018秒时,点A旋转到点B,如图,AOA120,OAOA3,作AHx轴于H,AOH30,AHOA,OHAH,A(,)故答案为(,)【点睛】考核知识点:解直角三角形.结合旋转和解直角三角形知识解决问题是关键.15、【分析】连接,交对称轴于点,先通过解方程,得,通过,得,于是利用勾股定理可得到的长;再根据三角形中位线性质得,所以;由点在抛物线对称轴上,、两点为抛物线与轴的交点,得;利用两点之间线段最短得到此时的值最小,
16、其最小值为的长,从而得到的最小值【详解】如图,连接,交对称轴于点,则此时最小 抛物线与轴交于,两点,与轴交于点,当时,解得:,即,当时,即, 点、分别是、的中点, ,点在抛物线对称轴上,、两点为抛物线与轴的交点,此时的值最小,其最小值为,的最小值为:故答案为:【点睛】此题主要考查了抛物线与轴的交点以及利用轴对称求最短路线,用到了三角形中位线性质和勾股定理正确得出点位置,以及由抛物线的对称性得出是解题关键16、【分析】如图,连接CE,可得AC=CE,由AC是半圆的直径,可得OA=OC=CE,根据平行线的性质可得COE=90,根据含30角的直角三角形的性质可得CEO=30,即可得出ACE=60,利
17、用勾股定理求出OE的长,根据S阴影=S扇形ACE-SCEO-S扇形AOD即可得答案.【详解】如图,连接CE,AC=6,AC、CE为扇形ACB的半径,CE=AC=6,OE/BC,ACB=90,COE=180-90=90,AOD=90,AC是半圆的直径,OA=OC=CE=3,CEO=30,OE=,ACE=60,S阴影=S扇形ACE-SCEO-S扇形AOD=-=,故答案为:【点睛】本题考查扇形面积、含30角的直角三角形的性质及勾股定理,熟练掌握扇形面积公式并正确作出辅助线是解题关键.17、或【分析】根据可知,因此分和两种情况讨论,当时,;当时,利用勾股定理求出斜边AB,再由即可得.【详解】(1)当时
18、,BC为斜边,AC为所对的直角边则(2)当时,AB为斜边,AC为所对的直角边设,则由勾股定理得:则综上,答案为或.【点睛】本题考查了直角三角形中锐角三角函数,熟记锐角三角函数的计算方法是解题关键.18、【解析】根据一元二次方程的解的定义,将x=2代入已知方程,列出关于q的新方程,通过解该方程即可求得q的值.【详解】x=2是方程x-3x+q=0的一个根,x=2满足该方程,2-32+q=0,解得,q=2.故答案为2.【点睛】本题考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.三、解答题(共66分)19、 (1
19、)y=x22x3;(2)(1,4)【分析】(1)将两点代入列出关于b和c的二元一次方程组,然后进行求解;(2)根据二次函数的顶点坐标的求法进行求解【详解】解:(1)把(1,0),(3,0)代入y=x2+bx+c(a0)得,解得所求函数的解析式为y=x22x3,(2)抛物线的解析式为y=x22x3,=1,抛物线的顶点坐标为(1,-4)考点:待定系数法求函数解析式、二次函数顶点坐标的求法20、(1)详见解析;(2)24【分析】(1)可先证得AEFDEB,可求得AF=DB,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论;(2)将菱形ADCF的面积转换成ABC的面
20、积,再用SABC的面积=ABAC,结合条件可求得答案【详解】(1)证明:E是AD的中点 AEDE AFBC AFEDBE在AEF和DEB中AEFDEB(AAS) AFDB D是BC的中点BD=CD=AF四边形ADCF是平行四边形BAC90, ADCDBC四边形ADCF是菱形; (2)解:设AF到CD的距离为h,AFBC,AFBDCD,BAC90,AC6,AB8S菱形ADCFCDhBChSABCABAC【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键21、C=30【分析】根据平行线的性质求出AOD,根据圆周角定理解答【详解】解:OAD
21、E,AOD=D=60,由圆周角定理得,C= AOD=30【点睛】本题考查的是圆周角定理和平行线的性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键22、(1)见解析;(2)见解析,1【分析】(1)连接OC,由OA=OC得OAC=OCA,结合折叠的性质得OCA=FAC,于是可判断OCAF,然后根据切线的性质得直线FC与O相切;(2)连接OD、BD,利用直角三角形斜边上的中线的性质可证得CB=OC=OD=BD,再根据菱形的判定定理即可判定;首先证明OBC是等边三角形,在RtOCE中,根据,构建方程即可解决问题;【详解】(1)如图,连接OC,OA=OC,
22、OAC=OCA,由翻折的性质,有OAC=FAC,AEC=AFC=90,FAC=OCA,AF,OCG=AFC=90,故FG是O的切线;(2)如图,连接OD、BD,CD垂直于直径AB,OC=OD,BC=BD,又B为OG的中点,CB=OB,又OB=OC,CB=OC,则有CB=OC=OD=BD,故四边形OCBD是菱形;由知,OBC是等边三角形,CD垂直于直径AB,设O的半径长为R,在RtOCE中,有,即,解之得:,O的半径长为:1【点睛】本题属于圆综合题,考查了切线的判定,等边三角形的判定和性质,直角三角形斜边上的中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想解决问题2
23、3、树DE的高度为6米【分析】先根据ACB=30求出AC=1米,再求出EAC=60,解RtACE得EC的长,依据DCE=60,解RtCDE得的长【详解】B=90,ACB=30,AB=2,AC=2AB=1又DCE=60,ACE=90AFBD,CAF=ACB=30,EAC=60在RtACE中,在RtDCE中DCE=60,答:树DE的高度为6米【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形24、(1);(2)【分析】(1)利用因式分解法求解;(2)在左右两边同时加上一次项系数-8的一半的平方后配方,再开方,即可得出两个一元一次方程,即可求解【详
24、解】解:(1),或,所以;(2),即,则,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键25、 【分析】过A作ADBC,根据三角函数和三角形面积公式解答即可【详解】过A作ADBC在ABD中,sinB=,AB=5,AD=3,BD=1在ADC中,cosC=,C=15,DC=AD=3,ABC的面积=【点睛】本题考查了解直角三角形,关键是根据三角函数和三角形面积公式解答26、(1)30,6;(2);t【分析】(1)设点Q的运动速度为a,则由图可看出,当运动时间为5s时,PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求出AB的长;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论