江西省宜春市名校2023学年数学九年级第一学期期末经典模拟试题含解析_第1页
江西省宜春市名校2023学年数学九年级第一学期期末经典模拟试题含解析_第2页
江西省宜春市名校2023学年数学九年级第一学期期末经典模拟试题含解析_第3页
江西省宜春市名校2023学年数学九年级第一学期期末经典模拟试题含解析_第4页
江西省宜春市名校2023学年数学九年级第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数 的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是( ) A

2、2B3C4D52李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )ABCD3如图,在矩形ABCD中(ADAB),点E是BC上一点,且DEDA,AFDE,垂足为点F,在下列结论中,不一定正确的是( )AAFDDCEBAFADCABAFDBEADDF4如图,点D是ABC的边BC上一点,BADC,AC2AD,如果ACD的面积为15,那么ABD的面积为()A15B10C7.5D55如图,在方格纸中,点A,B,C都在格点上,则tanABC的值是()A2BCD6反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()Am0Bm0C

3、m1Dm17如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )ABCD8已知:在ABC中,A78,AB4,AC6,下列阴影部分的三角形与原ABC不相似的是()ABCD9不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是( )ABCD10抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是()A小于B等于C大于D无法确定11若关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是()Ak0Bk4Ck4Dk4且k012

4、如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A逐渐变短B先变短后变长C先变长后变短D逐渐变长二、填空题(每题4分,共24分)13计算:_14已知二次函数的图象经过原点,则的值为_.15如图抛物线y=x2+2x3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_16菱形的两条对角线长分别是6和8,则菱形的边长为_17若圆锥的母线长为cm,其侧面积,则圆锥底面半径为 cm18已知A60,则tanA_三、解答题(共78分)19(8分)如图,正方形ABCD的边长为

5、2,点E是AD边上的动点,从点A开始沿AD向D运动以BE为边,在BE的上方作正方形BEFG,EF交DC于点H,连接CG、BH请探究:(1)线段AE与CG是否相等?请说明理由(2)若设AE=x,DH=y,当x取何值时,y最大?最大值是多少?(3)当点E运动到AD的何位置时,BEHBAE?20(8分)小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.若木杆的长为,则其影子的长为 ;在同一时刻同一地点,将另一根木杆直立于地面,请画出表示此时木杆在地面上影子的线段;(2)如图2,夜晚在路灯下,小彬将木杆水平放

6、置,此时木杆在水平地面上的影子为线段.请在图中画出表示路灯灯泡位置的点;若木杆的长为,经测量木杆距离地面,其影子的长为,则路灯距离地面的高度为.21(8分)如图,在中,点是边上的动点(不与重合),点在边上,并且满足.(1)求证:;(2)若的长为,请用含的代数式表示的长;(3)当(2)中的最短时,求的面积.22(10分)先化简,再求值:,其中,23(10分)解分式方程:24(10分)已知正方形ABCD的边长为2,中心为M,O的半径为r,圆心O在射线BD上运动,O与边CD仅有一个公共点E.(1)如图1,若圆心O在线段MD上,点M在O上,OM=DE,判断直线AD与O的位置关系,并说明理由;(2)如图

7、2,O与边AD交于点F,连接MF,过点M作MF的垂线与边CD交于点G,若,设点O与点M之间的距离为,EG=,当时,求的函数解析式.25(12分)已知矩形的周长为1(1)当该矩形的面积为200时,求它的边长;(2)请表示出这个矩形的面积与其一边长的关系,并求出当矩形面积取得最大值时,矩形的边长26如图,方格纸中的每个小方格都是边长为1个单位的正方形.的顶点均在格点上,建立平面直角坐标系后,点的坐标为,点的坐标为(1)先将向右平移5个单位,再向下平移1个单位后得到.试在图中画出图形,并写出的坐标;(2)将绕点顺时针旋转后得到,试在图中画出图形.并计算在该旋转过程中扫过部分的面积参考答案一、选择题(

8、每题4分,共48分)1、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值【详解】如图过点D、C分别做DEx轴,CFy轴,垂足分别为E,FCF交反比例函数的图像于点G把x=0和y=0分别代入y=-4x+4得y=4和x=1A(1,0),B(0,4)OA=1,OB=4由ABCD是正方形,易证AOBDEABCF(AAS)DE=BF=OA=1,AE=CF=OB=4D(5,1),F(0,5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1

9、CG=CF-FG=4-1=3,即n=3故答案为B【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键2、B【分析】根据相似三角形的判定定理,即可得到答案【详解】DEBC,B=ADE,DFAC,A=BDF,ADEDBF故选:B【点睛】本题主要考查三角形相似的判定定理,掌握“有两个角对应相等的两个三角形相似”是解题的关键3、B【解析】A由矩形ABCD,AFDE可得C=AFD=90,ADBC,ADF=DEC又DE=AD,AFDDCE(AAS),故A正确;BADF不一定等于30,直角三角形ADF中,AF不一定等于AD的一半,故B错误

10、;C由AFDDCE,可得AF=CD,由矩形ABCD,可得AB=CD,AB=AF,故C正确;D由AFDDCE,可得CE=DF,由矩形ABCD,可得BC=AD,又BE=BCEC,BE=ADDF,故D正确;故选B4、D【分析】首先证明BADBCA,由相似三角形的性质可得:BAD的面积:BCA的面积为1:4,得出BAD的面积:ACD的面积1:3,即可求出ABD的面积【详解】解:BADC,BB,BADBCA,AC2AD,ACD的面积为15,ABD的面积155,故选:D【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.5、A【分析】根据直角三角形解决问题即可【详解】解:

11、作AEBC,AEC90,AE4,BE2,tanABC,故选:A【点睛】本题主要考查了解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6、D【解析】在每个象限内的函数值y随x的增大而增大,m10,m17、B【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率【详解】根据题意可得所有的线段有15条,长度为的线段有AE、AC、FD、FB、EC、BD共6条,则P(长度为的线段)=故选:B【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用8、C

12、【分析】根据相似三角形的判定定理对各选项进行逐一判定即可【详解】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C【点睛】本题主要考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.9、D【分析】利用概率公式直接求解即可.【详解】解:袋子装有个球,其中个红球,个白球,从中任意摸出一个球,则摸出的球是红球的概率是:故选:【点睛】本题考查的是利用概率的

13、定义求事件的概率.10、B【分析】利用概率的意义直接得出答案【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于,前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:,故选:【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键11、C【解析】根据判别式的意义得到=(-1)2-1k0,然后解不等式即可【详解】关于x的一元二次方程有两个不相等的实数根,解得:k1故答案为:C【点睛】本题考查的知识点是一元二次方程根的情况与判别式的关系,解题关键是熟记一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实

14、数根;(3)0方程没有实数根12、B【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长故选B【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影如物体在灯光的照射下形成的影子就是中心投影二、填空题(每题4分,共24分)13、【分析】根据特殊角三角函数值和二次根式化简整理,合并同类二次根式即可求解【详解】解:故答案为:【点睛】本题考查了特殊角的三角函数值和二次根式的计算,熟知特殊角的三角函数值是解题关键14、2;【分析】本题中已知了二次函数经过

15、原点(1,1),因此二次函数与y轴交点的纵坐标为1,即m(m-2)=1,由此可求出m的值,要注意二次项系数m不能为1【详解】根据题意得:m(m2)=1,m=1或m=2,二次函数的二次项系数不为零,所以m=2.故填2.【点睛】本题考查二次函数图象上点的坐标特征,需理解二次函数与y轴的交点的纵坐标即为常数项的值.15、【解析】连接AC,与对称轴交于点P, 此时DE+DF最小,求解即可.【详解】连接AC,与对称轴交于点P,此时DE+DF最小,点D、E、F分别是BC、BP、PC的中点, 在二次函数y=x2+2x3中,当时, 当时,或 即 点P是抛物线对称轴上任意一点,则PA=PB,PA+PC=AC,P

16、B+PC=DE+DF的最小值为: 故答案为【点睛】考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P的位置是解题的关键.16、1【分析】根据菱形对角线垂直平分,再利用勾股定理即可求解.【详解】解:因为菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长为1故答案为1【点睛】此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.17、3【解析】圆锥的母线长是5cm,侧面积是15cm2,圆锥的侧面展开扇形的弧长为:l=6,锥的侧面展开扇形的弧长等于圆锥的底面周长,r=3cm,18、【分析】直接利用特殊角的三角函数值得出答案【详解】tanA=tan60=故答

17、案为:【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键三、解答题(共78分)19、(1)AE=CG,见解析;(2)当x=1时,y有最大值,为;(3)当E点是AD的中点时,BEHBAE,见解析.【解析】(1)由正方形的性质可得AB=BC,BE=BG,ABC=EBG=90,由“SAS”可证ABECBG,可得AE=CG;(2)由正方形的性质可得A=D=FEB=90,由余角的性质可得ABE=DEH,可得ABEDEH,可得,由二次函数的性质可求最大值;(3)当E点是AD的中点时,可得AE=1,DH=,可得,且A=FEB=90,即可证BEHBAE【详解】(1)AE=CG,理由如下:四边

18、形ABCD,四边形BEFG是正方形,AB=BC,BE=BG,ABC=EBG=90,ABE=CBG,且AB=BC,BE=BG,ABECBG(SAS),AE=CG;(2)四边形ABCD,四边形BEFG是正方形,A=D=FEB=90,AEB+ABE=90,AEB+DEH=90,ABE=DEH,又A=D,ABEDEH,=,当x=1时,y有最大值为;(3)当E点是AD的中点时,BEHBAE,理由如下:E是AD中点,AE=1,又ABEDEH,又,且DAB=FEB=90,BEHBAE.【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,正方形的性质,二次函数的性质,灵活运用这些性质进行推理是本题的关键

19、20、(1);见解析;(2)见解析;【分析】(1)根据题意证得四边形为平行四边形,从而求得结论;根据平行投影的特点作图:过木杆的顶点作太阳光线的平行线;(2)分别过影子的端点及其线段的相应的端点作射线,两条射线的交点即为光源的位置;根据,可证得,利用相似三角形对应高的比等于相似比即可求得结论.【详解】(1)根据题意:,四边形为平行四边形,;如图所示,线段即为所求;(2)如图所示,点即为所求;过点作分别交、于点、,解得:,路灯距离地面的高度为米.【点睛】本题考查平行投影问题以及相似三角形的判定和性质,平行光线得到的影子是平行光线经过物体的顶端得到的影子,利用相似三角形对应高的比等于相似比是解决本

20、题的关键21、(1)见解析;(2);(3)【分析】(1)由等腰三角形的性质可得,然后根据三角形的外角性质可得,进而可证得结论;(2)根据相似三角形的对应边成比例可得CE与x的关系,进一步即可得出结果;(3)根据(2)题的结果,利用二次函数的性质可得AE最短时x的值,即BD的长,进而可得AD的长和ADC的面积,进一步利用所求三角形的面积与ADC的面积之比等于AE与AC之比即得答案.【详解】解:(1),;(2),;(3),时,的值最小为6.4,此时,即,.【点睛】本题考查了相似三角形的判定和性质、二次函数的性质、勾股定理、等腰三角形的性质和三角形的面积等知识,属于中档题型,熟练掌握相似三角形的判定

21、和性质与二次函数的性质是解题的关键.22、,【分析】原式括号中变形后,利用同分母分式的减法法则计算,再利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值【详解】原式当,时,原式=3()()【点睛】此题考查了分式的化简求值,以及分母有理化,熟练掌握运算法则是解本题的关键23、分式方程无解【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】去分母得:x(x+1)x2+1=2,去括号得:x2+xx2+1=2,解得:x=1,经检验x=1是增根,分式方程无解【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验24、(1)相切

22、,证明详见解析;(2).【分析】(1)过O作OFAD于F,连接OE,可证ODFODE,可得OF=OE,根据相切判定即可得出:AD与相切;(2)连接MC,可证,可得DF=CG,过点E作EPBD于P,过点F作FHBD于H设DP=a,DH=b,由于DHF与DPE都是等腰直角三角形,设EP=DP=a,FH=DH=b,利用勾股定理:可列出方程组解得a=b,可得 , .由于 可得,由 可得OD=a, 由OD=OM-DM,可得, 代入2DF+y=2可得,整理得y与x的函数解析式,由DF1, EG0,可得x的取值范围,即可求解问题.【详解】解:(1)直线AD与O相切,理由如下:过O作OFAD于F,连接OEOF

23、D=90在正方形ABCD中,BD平分ADE,ADE=90FDO=EDO=45与CD仅有一个公共点ECD与相切OEDC,OE为半径OED=90又OD=ODODFODEOF=OEOFAD、OF=OEAD与相切(2)连接MC在正方形ABCD中,BCD=90,ADB =45BCD=90,M为正方形的中心MC=MD=,ADB=DCM=45FMMG,即FMG=90且在正方形ABCD中,DMC=90FMD+DMG=DMG+CMGFMD=CMG DF=CG过点E作EPBD于P,过点F作FHBD于H设DP=a,DH=bFDM=EDM=45DHF与DPE都是等腰直角三角形EP=DP=a,FH=DH=b ,且由(1)得 点O在正方形ABCD外OP=OD+DP,OH=OD+DH在RtOPE与RtOHF中 得:(a-b)(OD+a+b)=0a-b=0或OD+a+b=0OD+a+b0a-b=0a=b即点P与点H重合,也即EFBD,垂足为P(或H)DP=a,DH=b在RtDPE中, 在RtDHF中, DF=DECD=DE+EG+CG=2,即2DF+EG=22DF+y=2在RtDPF中, ,且 在RtOPE与RtOHF中 OD+a=2aOD=a又因为 OD=OM-DM,即 又因为 2DF+y=2 DF1,且2DF+EG=2EG0,即y0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论