版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1若关于的一元二次方程有两个实数根则的取值范围是()AB且C且D2如图所示,二次函数yax2+bx+c的图象开口向上,且对称轴在(1,0)的左边,下列结论一定正确的是()Aabc0B2ab
2、0Cb24ac0Dab+c13如图,在中,点P在边AB上,则在下列四个条件中:;,能满足与相似的条件是( )ABCD4如图,四边形ABCD是正方形,延长BC到E,使,连接AE交CD于点F,则( )A67.5B65C55D455二次函数的图象是一条抛物线,下列说法中正确的是( )A抛物线开口向下B抛物线经过点C抛物线的对称轴是直线D抛物线与轴有两个交点6如图,周长为定值的平行四边形中,设的长为,周长为16,平行四边形的面积为,与的函数关系的图象大致如图所示,当时,的值为( )A1或7B2或6C3或5D47某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到
3、1班和2班的概率是( )A18B16C38已知关于的一元二次方程有两个相等的实数根,则锐角等于( )ABCD9随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是( )ABCD10已知二次函数()的图象如图所示,有下列结论:;.其中,正确结论的个数是( )A1B2C3D411如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A4B6C9D1212下列说法正确的是( )A“任意画出一个等边三角形,它是轴对称图形”是随机事件B某种彩票的中奖率为,说明每买1000张彩票,一定有一张
4、中奖C抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D“概率为1的事件”是必然事件二、填空题(每题4分,共24分)13如图,过反比例函数y=(x0)的图象上一点A作ABx轴于点B,连接AO,若SAOB=2,则k的值为_14如图:在ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么ACD的周长是_15如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k0)的图象上与正方形的一个交点若图中阴影部分的面积等于9,则这个反比例函数的解析式为 16分解因式:x316x_17已知抛物线yx2+2k
5、x6与x轴有两个交点,且这两个交点分别在直线x2的两侧,则k的取值范围是_18若函数为关于的二次函数,则的值为_三、解答题(共78分)19(8分)化简:20(8分)一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球(1)“其中有1个球是黑球”是 事件;(2)求2个球颜色相同的概率21(8分)抛物线的图像与轴的一个交点为,另一交点为,与轴交于点,对称轴是直线(1)求该二次函数的表达式及顶点坐标;(2)画出此二次函数的大致图象;利用图象回答:当取何值时,?(3)若点在抛物线的图像上,且点到轴距离小于3,则的取值范围为 ;22(10分)如图,AB是O的直径,点C是圆周
6、上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使12A(1)求证:直线PC是O的切线;(2)若CD4,BD2,求线段BP的长23(10分)一艘运沙船装载着5000m3沙子,到达目的地后开始卸沙,设平均卸沙速度为v(单位:m3/小时),卸沙所需的时间为t(单位:小时)(1)求v关于t的函数表达式,并用列表描点法画出函数的图象;(2)若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围24(10分)如图,C是直径AB延长线上的一点,CD为O的切线,若C20,求A的度数25(12分)如图,在直角ABC中,C90,AB5,作ABC的
7、平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B)(1)求证:AC是O的切线;(2)若点E恰好是AO的中点,求的长;(3)若CF的长为,求O的半径长;点F关于BD轴对称后得到点F,求BFF与DEF的面积之比26如图,抛物线yax2+bx+2交x轴于点A(-1,0),B(n,0)(点A在点B的左边),交y轴于点C(1)当n2时求ABC的面积(2)若抛物线的对称轴为直线xm,当1n4时,求m的取值范围参考答案一、选择题(每题4分,共48分)1、C【分析】由二次项系数非零结合根的判别式,即可得出关于的一元一次不等式组, 解之即可得出结论 【详
8、解】解:关于的一元二次方程有两个不相等的实数根,解得:且故选:C【点睛】本题考查了根的判别式以及一元二次方程的定义, 根据二次项系数非零结合根的判别式,列出关于的一元一次不等式组是解题的关键 2、B【分析】根据二次函数的图象及性质与各项系数的关系即可判断A;根据抛物线的对称轴即可判断B;根据抛物线与x轴的交点个数即可判断C;根据当x1时y0,即可判断D.【详解】A、如图所示,抛物线经过原点,则c0,所以abc0,故不符合题意;B、如图所示,对称轴在直线x1的左边,则1,又a0,所以2ab0,故符合题意;C、如图所示,图象与x轴有2个交点,依据根的判别式可知b24ac0,故不符合题意;D、如图所
9、示,当x1时y0,即ab+c0,但无法判定ab+c与1的大小,故不符合题意故选:B【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.3、D【分析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当,所以,故条件能判定相似,符合题意;当,所以,故条件能判定相似,符合题意;当,即AC:AC,因为所以,故条件能判定相似,符合题意;当,即PC:AB,而,所以条件不能判断和相似,不符合题意;能判定相似,故选D【点睛】本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.4、A【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,
10、把各角之间关系找到即可求解【详解】解:四边形ABCD是正方形,CE=CA,ACE=45+90=135,E=22.5,AFD=90-22.5=67.5,故选A【点睛】主要考查到正方形的性质,等腰三角形的性质和外角与内角之间的关系这些性质要牢记才会灵活运用5、D【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2-1=0解的情况对D进行判断【详解】A.a=2,则抛物线y=2x21的开口向上,所以A选项错误;B. 当x=1时,y=211=1,则抛物线不经过点(1,-1),所以B选项错误;C. 抛物线的对称轴为直线x=0,所以C选项错误;D. 当y=0
11、时,2x21=0,此方程有两个不相等的实数解,所以D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.6、B【分析】过点A作AEBC于点E,构建直角ABE,通过解该直角三角形求得AE的长度,然后利用平行四边形的面积公式列出函数关系式,即可求解.【详解】如图,过点A作AEBC于点E,B60,边AB的长为x,AEABsin60平行四边形ABCD的周长为16,BC(162x)8x,yBCAE(8x)(0 x8)当时,(8x)=解得x1=2,x2=6故选B.【点睛】考查了动点问题的函数图象掌握平行四边形的周长公式和解直角三角形求得
12、AD、BE的长度是解题的关键7、B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=212故选B8、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案【详解】关于的一元二次方程有两个相等的实数根,=,解得:,=故选D【点睛】本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键9、B【分析】在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那
13、么这个图形叫做中心对称图形,据此依次判断即可.【详解】在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,A、C、D不符合,不是中心对称图形,B选项为中心对称图形.故选:B.【点睛】本题主要考查了中心对称图形的定义,熟练掌握相关概念是解题关键.10、D【解析】由题意根据函数图象和二次函数的性质可以判断题目中的各个小题的结论是否正确,从而可以解答本题【详解】解:函数图象与x轴有两个交点,故b2-4ac0,所以正确,由图象可得,a0,b0,c0,故abc0,所以正确,当x=-2时,y=4a-2b+c0,故正确,该函数的对称轴为x=1,当x=-
14、1时,y0,当x=3时的函数值与x=-1时的函数值相等,当x=3时,y=9a+3b+c0,故正确,故答案为:故选D.【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答11、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析12、D【解析】试题解析:A、“任意画出一个等边
15、三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为.故C错误;D. “概率为1的事件”是必然事件,正确.故选D.二、填空题(每题4分,共24分)13、1【详解】解:ABx轴于点B,且SAOB=2,SAOB=|k|=2,k=1函数在第一象限有图象,k=1故答案为1【点睛】本题考查反比例函数系数k的几何意义14、1【分析】根据三角形中位线定理得到AC=2DE=5,ACDE,根据勾股定理的逆定理得到ACB=90,根据线段垂直平分线的性质得到DC=BD,根据三角形的周
16、长公式计算即可【详解】D,E分别是AB,BC的中点,AC=2DE=5,ACDE,AC2+BC2=52+122=169,AB2=132=169,AC2+BC2=AB2,ACB=90,ACDE,DEB=90,又E是BC的中点,直线DE是线段BC的垂直平分线,DC=BD,ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,故答案为1【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键15、【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质【分析】由反比例函数的对称性可知阴影部
17、分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:反比例函数的图象关于原点对称,阴影部分的面积和正好为小正方形的面积设正方形的边长为b,则b2=9,解得b=3正方形的中心在原点O,直线AB的解析式为:x=2点P(2a,a)在直线AB上,2a=2,解得a=3P(2,3)点P在反比例函数(k0)的图象上,k=23=2此反比例函数的解析式为:16、x(x+4)(x4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分
18、解即可 解:原式=x(x216)=x(x+4)(x4),故答案为x(x+4)(x4)17、【分析】由抛物线yx2+2kx6可得抛物线开口方向向上,根据抛物线与x轴有两个交点且这两个交点分别在直线x2的两侧可得:当x=2时,抛物线在x轴下方,即y1.【详解】解:yx2+2kx6与x轴有两个交点,两个交点分别在直线x2的两侧,当x2时,y14+4k61解得:k;k的取值范围是k,故答案为:k【点睛】本题主要考查二次函数图象性质,解决本题的关键是要熟练掌握二次函数图象的性质.18、2【分析】根据二次函数的定义,列出关于m的方程和不等式,即可求解.【详解】函数为关于的二次函数,且,m=2.故答案是:2
19、.【点睛】本题主要考查二次函数的定义,列出关于m的方程和不等式,是解题的关键.三、解答题(共78分)19、【分析】根据特殊角的三角函数值与二次根式的运算法则即可求解【详解】解:原式=【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值20、(1)随机(2)【解析】试题分析:(1)直接利用随机事件的定义分析得出答案;(2)利用树状图法画出图象,进而利用概率公式求出答案试题解析:(1)“其中有1个球是黑球”是随机事件;故答案为随机;(2)如图所示:,一共有20种可能,2个球颜色相同的有8种,故2个球颜色相同的概率为:=考点:列表法与树状图法21、(1),;(2)见解析,或;(3)【分
20、析】(1)根据图像对称轴是直线,得到,再将, 代入解析式,得到关于a、b、c的方程组,即可求得系数,得到解析式,再求出顶点坐标即可;(2)根据特定点画出二次函数的大致图象,根据二次函数与不等式的关系,即可得到对应的x的取值范围 (3)求出当时,当时,y的值,即可求出的取值范围【详解】(1)因为图像对称轴是直线,所以,将, 代入解析式,得:由题知,解得,所以解析式为:;当时,所以顶点坐标(2)二次函数的大致图象:当或,(3)当时,得,当时,得,所以y取值范围为 ,即的取值范围为【点睛】本题考查了待定系数法的求解析式、二元一次方程与不等式的关系,本题难度不大,是二次函数中经常考查的类型22、(1)
21、详见解析;(2)【分析】(1)连接OC,由AB是O的直径证得ACO+BCO90,由OA=OC证得2A=ACO,由此得到PCO90,即证得直线PC是O的切线;(2)利用1A证得CDB90,得到CD2ADBD,求出AD,由此求得AB=10,OB=5;在由OCP90推出OC2ODOP,求出OP,由此求得线段BP的长.【详解】(1)连接OC,AB是O的直径,ACB90,ACO+BCO90,OAOC,AACO,A12,2ACO,2+BCO90,PCO90,OCPC,直线PC是O的切线;(2)ACB90,A+ABC901A,1+ABC90,CDB90,CD2ADBD,CD4,BD2,AD8,AB10,OC
22、OB5,OCP90,CDOP,OC2ODOP,52(52)OP,OP,PBOPOB【点睛】此题是圆的综合题,考查圆的切线的判定定理,圆中射影定理的判定及性质,(2)中求出CDB90是此题解题的关键,由此运用射影定理求出线段的长度.23、(1)v,见解析;(2)200v1【分析】(1)直接利用反比例函数解析式求法得出答案;(2)直接利用(1)中所求解析式得出v的取值范围【详解】(1)由题意可得:v=,列表得:v1011625t246描点、连线,如图所示:;(2)当t=20时,v=1,当t=25时,v=200,故卸沙的速度范围是:200v1【点睛】本题主要考查了反比例函数的应用,正确得出函数解析式是解题关键24、35【分析】连接OD,根据切线的性质得ODC=90,根据圆周角定理即可求得答案.【详解】连接OD,CD为O的切线,ODC=90,DOC=90C=70,由圆周角定理得,A=DOC=35【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径25、(1)见解析;(2);(3)r11,;BFF与DEF的面积比为或【分析】(1)连结,证明,得出,则结论得证;(2)求出,连结,则,由弧长公式可得出答案;(3)如图3,过作于,则,四边形是矩形,设圆的半径为,则,证明,由比例线段可得出的方程,解方程即可得出答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训期间的安全责任课件
- 培训专案总结报告
- 员工培训课件模板
- 口腔护士培训课件内容
- 肺动脉导管置入术总结2026
- 医院课件培训总结报道
- 化工经济与技术
- Unit 4 Life on Mars高频考点讲义 -译林版英语九年级下册
- 化妆礼仪培训课件
- 分腿前桥技术讲解
- 精神科住院病人的情绪管理
- 2025福建高中春季高考学业水平考试数学测试卷
- DZT0181-1997水文测井工作规范
- DB375026-2022《居住建筑节能设计标准》
- 【深信服】PT1-AF认证考试复习题库(含答案)
- 社会实践-形考任务四-国开(CQ)-参考资料
- 腰椎间盘突出患者术后护理课件
- 语文小学二年级上册期末培优试卷测试题(带答案)
- 医院护理培训课件:《高压氧临床的适应症》
- 中山大学研究生因公临时出国境申报表
- YY/T 0127.18-2016口腔医疗器械生物学评价第18部分:牙本质屏障细胞毒性试验
评论
0/150
提交评论