答疑解惑:回归分析_第1页
答疑解惑:回归分析_第2页
答疑解惑:回归分析_第3页
答疑解惑:回归分析_第4页
答疑解惑:回归分析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE6回归分析答疑解惑一回归含义探究“回归”一词是由英国生物学家在研究人体身高的遗传问题时首先提出的。如根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和Y之间存在一种相关关系。一般而言,父辈身高者,其子辈身高也高依此推论祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点,“回归”一词即源于此。不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着

2、重要作用。二如何认识相关关系研究两个变量间的相关关系是学习本节的目的。对于相关关系我们可以从下三个方面加以认识:(1)相关关系与函数关系不同。函数关系中的两个变量间是一种确定性关系。例如正方形面积S与边长之间的关系就是函数关系。即对于边长的每一个确定的值,都有面积S的惟一确定的值与之对应。相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系。例如人的身高与年龄;商品的销售额与广告费等等都是相关关系(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。例如有人发现,对于在校儿童,身高与阅读技能有很强的相关关系。然而学会新词并不能使儿童马上长高,而是涉及到第

3、三个因素年龄,当儿童长大一些,他们的阅读能力会提高而且由于长大身高也会高些。(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化。例如正方形面积S与其边长间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性。而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计。相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况。因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还可使我们对函数关系的认识上升到一个新的高度。三认识回归分

4、析应注意的几个方面现阶段所研究的回归分析是回归分析中最简单,也是最基本的一种类型元线性回归分析回归分析是通过一个变量或一些变量的变化解释另一变量的变化对于线性回归分析,我们要注意以下几个方面:(1)回归分析是对具有相关关系的两个变量进行统计分析的方法。两个变量具有相关关系是回归分析的前提。(2)散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析。(3)求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义。四应用回归分析解决问题的一般步

5、骤首先,根据理论和对问题的分析判断,将变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量其具体步骤是:收集数据作散点图求回归直线方程利用方程进行预报五析案例探问题案例:女大学生的身高与体重从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:编号12345678身高/cm165165157170175165155170体重/g4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172c

6、m的女大学生的体重解:1、选取身高为自变量,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上如下图,所以不能用一次函数y=ba描述它们关系。我们可以用线性回归模型来表示:y=ba,其中a和b为模型的未知参数,称为随机误差。根据最小二乘法估计和就是未知参数a和b的最好估计,于是有b=所以回归方程是所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为对以上案例提出问题问题1身高为172cm的女大学生的体重一定是60.316kg吗答:身高为172cm的

7、女大学生的体重不一定是,但一般可以认为她的体重在60.316kg左右。问题2产生随机误差项的原因是什么随机误差的、其它因素的影响:影响身高y的因素不只是体重,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高y的观测误差问题3线性回归模型与一次函数的不同:事实上,观察上述散点图,我们可以发现女大学生的体重和身高之间的关系并不能用一次函数来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系)在数据表中身高为165cm的3名女大学生的体重分别为48g、57g和61g,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果(称为随机误差或残差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论