




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省铜陵市某学校数学高职单招测试试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11
2.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.
B.
C.
D.
3.设A-B={x|x∈A且xB},若M={4,5,6,7,8},N={7,8,9,10}则M-N等于()A.{4,5,6,7,8,9,10}B.{7,8}C.{4,5,6,9,10}D.{4,5,6}
4.已知i是虚数单位,则1+2i/1+i=()A.3-i/2B.3+i/2C.3-iD.3+i
5.若等比数列{an}满足,a1+a3=20,a2+a4=40,则公比q=()A.1B.2C.-2D.4
6.公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.8
7.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角
8.x2-3x-4<0的等价命题是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<1
9.如图,在长方体ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A—BB1D1D的体积为()cm3.A.5B.6C.7D.8
10.已知互为反函数,则k和b的值分别是()A.2,
B.2,
C.-2,
D.-2,
二、填空题(10题)11.
12.在△ABC中,若acosA=bcosB,则△ABC是
三角形。
13.
14.某机电班共有50名学生,任选一人是男生的概率为0.4,则这个班的男生共有
名。
15.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.
16.
17.则a·b夹角为_____.
18.数列{an}满足an+1=1/1-an,a2=2,则a1=_____.
19.已知向量a=(1,-1),b(2,x).若A×b=1,则x=______.
20.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.
三、计算题(5题)21.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
22.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
23.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
24.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
25.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
四、证明题(5题)26.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
27.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
28.△ABC的三边分别为a,b,c,为且,求证∠C=
29.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
30.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
五、简答题(5题)31.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
32.化简
33.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
34.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
35.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
六、综合题(5题)36.
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
39.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.C圆与圆相切的性质.圆C1的圆心C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆心C2(3,4),
2.D从中随即取出2个球,每个球被取到的可能性相同,因此所有的取法为,所取出的的2个球至少有1个白球,所有的取法为,由古典概型公式可知P=5/6.
3.D
4.B复数的运算.=1+2i/1+i=(1+2i)(1-i)f(1+i)(1-i)=l-i+2i-2i2/1-i2=3+i/2
5.B解:设等比数列{an}的公比为q,∵a1+a3=20,a2+a4=40,∴q(a1+a3)=20q=40,
解得q=2.
6.A
7.D
8.B
9.B四棱锥的体积公式∵长方体底面ABCD是正方形,∴△ABD中BD=3cm,BD边上的高是3/2cm,∴四棱锥A-BB1DD1的体积为去1/3×3×2×3/2=6
10.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.
11.{x|1<=x<=2}
12.等腰或者直角三角形,
13.-1/16
14.20男生人数为0.4×50=20人
15.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
16.
17.45°,
18.1/2数列的性质.a2=1/1-a1=2,所以a1=1/2
19.1平面向量的线性运算.由题得A×b=1×2+(-1)×x=2-x=1,x=1。
20.180,
21.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
22.
23.
24.
25.
26.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
27.
28.
29.
30.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
31.由已知得:由上可解得
32.
33.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
34.
35.(1)(2)∴又∴函数是偶函数
36.
37.
38.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物联网技术产业生态建设协议
- 网络设施租赁与运维服务协议
- 2025年采购师(高级)考试试卷:采购风险管理案例分析
- 2025年医保知识考试题库及答案:医保政策调整与影响法规应用易错题解析试卷
- 2025年电子商务师(初级)职业技能鉴定模拟试题分析
- 2025年文化旅游融合发展示范区建设资金申请项目市场推广策略报告
- 2025年金融风险管理升级方案:量子计算模拟技术深度报告001
- 医药电商合规化运营模式下的药品质量追溯与监管政策优化研究报告
- 2025年表面工程化学品项目提案报告
- 议论文如何表达观点5篇
- 2024年湖南省公安厅机关警务辅助人员招聘笔试参考题库附带答案详解
- 中华民族共同体概论课件专家版7第七讲 华夷一体与中华民族空前繁盛(隋唐五代时期)
- 青春期的妇科知识讲座
- 中考语文二轮专题复习《诗歌赏析之情感把握复习》公开课一等奖创新教学设计
- 2023起重机械安全技术规程
- JJF 2088-2023 大型蒸汽灭菌器温度、压力、时间参数校准规范
- 设立体育产业公司可行性研究报告
- 社区托管班方案
- 山羊传染性胸膜肺炎的防治
- 15-1外墙节能构造现场施工检验记录
- 汽车耐腐蚀标准
评论
0/150
提交评论