2022-2023学年山西省太原市某学校数学高职单招测试试题(含答案)_第1页
2022-2023学年山西省太原市某学校数学高职单招测试试题(含答案)_第2页
2022-2023学年山西省太原市某学校数学高职单招测试试题(含答案)_第3页
2022-2023学年山西省太原市某学校数学高职单招测试试题(含答案)_第4页
2022-2023学年山西省太原市某学校数学高职单招测试试题(含答案)_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年山西省太原市某学校数学高职单招测试试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3

2.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.

B.或

C.

D.或

3.若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-8

4.设m>n>1且0<a<1,则下列不等式成立的是()A.

B.

C.

D.

5.下表是某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,用最小二乘法得到y关于x的线性回归方程y^=0.7x+a,则a=()A.0.25B.0.35C.0.45D.0.55

6.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8

7.设集合,,则()A.A,B的都是有限集B.A,B的都是无限集C.A是有限集,B是无限集D.B是有限集,A是无限集

8.直线以互相平行的一个充分条件为()A.以都平行于同一个平面

B.与同一平面所成角相等

C.平行于所在平面

D.都垂直于同一平面

9.若等差数列{an}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.0

10.已知的值()A.

B.

C.

D.

二、填空题(10题)11.

12.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.

13.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.

14.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.

15.

16.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.

17.若函数_____.

18.

19.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.

20.双曲线x2/4-y2/3=1的虚轴长为______.

三、计算题(5题)21.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

22.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

23.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

24.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

25.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

四、证明题(5题)26.若x∈(0,1),求证:log3X3<log3X<X3.

27.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

28.己知sin(θ+α)=sin(θ+β),求证:

29.△ABC的三边分别为a,b,c,为且,求证∠C=

30.

五、简答题(5题)31.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

32.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

33.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

34.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长

35.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

六、综合题(5题)36.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

37.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

38.

39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

参考答案

1.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3

2.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。

3.C

4.A同底时,当底数大于0小于1时,减函数;当底数大于1时,增函数,底数越大值越大。

5.B线性回归方程的计算.由题可以得出

6.B点到直线的距离公式.因为直线l2的方程可化为3x+4y+1/2=0所以直线l1与直线l2的距离为=3/2

7.B由于等腰三角形和(0,1)之间的实数均有无限个,因此A,B均为无限集。

8.D根据直线与平面垂直的性质定理,D正确。

9.C等差数列的性质.a5=a1+4d=2+4d=6,d=1.

10.A

11.1

12.5或,

13.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.

14.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。

15.5

16.72,

17.1,

18.

19.45°,由题可知,因此B=45°。

20.2双曲线的定义.b2=3,.所以b=.所以2b=2.

21.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

22.

23.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

24.

25.

26.

27.

28.

29.

30.

31.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

32.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

33.

34.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则

35.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

37.解:(1)直线l过A(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论