2022-2023学年广东省揭阳市某学校数学高职单招测试试题(含答案)_第1页
2022-2023学年广东省揭阳市某学校数学高职单招测试试题(含答案)_第2页
2022-2023学年广东省揭阳市某学校数学高职单招测试试题(含答案)_第3页
2022-2023学年广东省揭阳市某学校数学高职单招测试试题(含答案)_第4页
2022-2023学年广东省揭阳市某学校数学高职单招测试试题(含答案)_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年广东省揭阳市某学校数学高职单招测试试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.如图所示的程序框图,当输人x的值为3时,则其输出的结果是()A.-1/2B.1C.4/3D.3/4

2.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)

3.在△ABC中,A=60°,|AB|=2,则边BC的长为()A.

B.7

C.

D.3

4.下列各组数中成等比数列的是()A.

B.

C.4,8,12

D.

5.已知函数f(x)=㏒2x,在区间[1,4]上随机取一个数x,使得f(x)的值介于-1到1之间的概率为A.1/3B.3/4C.1/2D.2/3

6.A.0

B.C.1

D.-1

7.cos240°=()A.1/2

B.-1/2

C./2

D.-/2

8.已知等差数列{an}满足a2+a4=4,a3+a5=它的前10项的和Sn()A.138B.135C.95D.23

9.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)

10.函数y=log2x的图象大致是()A.

B.

C.

D.

二、填空题(10题)11.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.

12.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā)=

13.

14.设A=(-2,3),b=(-4,2),则|a-b|=

15._____;_____.

16.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.

17.不等式|x-3|<1的解集是

18.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.

19.若一个球的体积为则它的表面积为______.

20.按如图所示的流程图运算,则输出的S=_____.

三、计算题(5题)21.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

22.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

24.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

25.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

四、证明题(5题)26.

27.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

28.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

29.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

30.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

五、简答题(5题)31.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

32.求证

33.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

34.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

35.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

六、综合题(5题)36.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

38.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

39.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

40.

参考答案

1.B程序框图的运算.当输入的值为3时,第一次循环时,x=3-3=0,所以x=0≤0成立,所以y=0.50=1.输出:y=1.故答案为1.

2.B由题可知,3-x2大于0,所以定义域为(-3,3)

3.C解三角形余弦定理,面积

4.B由等比数列的定义可知,B数列元素之间比例恒定,所以是等比数列。

5.A几何概型的概率.由-1<㏒2x≤1,得1<x<2;而[1,4]∩[1/2,2]=[1,2]区间长度为1,区间[1,4]长度为3,所求概率为1/3

6.D

7.B诱导公式的运用.cos240°=cos(60°+180°)=-cos60°=-1/2

8.C因为(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.

9.A

10.C对数函数的图象和基本性质.

11.12,高三年级应抽人数为300*40/1000=12。

12.0.5由于两个事件是对立事件,因此两者的概率之和为1,又两个事件的概率相等,因此概率均为0.5.

13.-1/16

14.

。a-b=(2,1),所以|a-b|=

15.2

16.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。

17.

18.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.

19.12π球的体积,表面积公式.

20.20流程图的运算.由题意可知第一次a=5,s=1,满足a≥4,S=1×5=5,a=a-1=4,当a=4时满足a≥4,输出S=20.综上所述,答案20.

21.

22.

23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

24.

25.

26.

27.

∴PD//平面ACE.

28.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

29.

30.

31.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

32.

33.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

34.

35.(1)∵

∴又∵等差数列∴∴(2)

36.

37.

38.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

39.解:(1)直线l过A(0,2),B(-2,-2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论