2022-2023学年河北省承德市某学校数学高职单招模拟考试(含答案)_第1页
2022-2023学年河北省承德市某学校数学高职单招模拟考试(含答案)_第2页
2022-2023学年河北省承德市某学校数学高职单招模拟考试(含答案)_第3页
2022-2023学年河北省承德市某学校数学高职单招模拟考试(含答案)_第4页
2022-2023学年河北省承德市某学校数学高职单招模拟考试(含答案)_第5页
免费预览已结束,剩余13页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河北省承德市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定

2.已知椭圆的一个焦点为F(0,1),离心率e=1/2,则该椭圆的标准方程为()A.x2/3+y2/4=1

B.x2/4+y2/3=1

C.x2/2+y2=1

D.y2/2+x2=1

3.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

4.若不等式|ax+2|<6的解集是{x|-1<x<2},则实数a等于()A.8B.2C.-4D.-8

5.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120

6.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-1

7.在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14

8.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)

9.A.B.C.D.

10.垂直于同一个平面的两个平面()A.互相垂直B.互相平行C.相交D.前三种情况都有可能

二、填空题(10题)11.要使的定义域为一切实数,则k的取值范围_____.

12.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.

13.

14.

15.

16.

17.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.

18.不等式(x-4)(x+5)>0的解集是

19.lg5/2+2lg2-(1/2)-1=______.

20.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.

三、计算题(5题)21.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

22.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

24.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

25.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、证明题(5题)26.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

27.若x∈(0,1),求证:log3X3<log3X<X3.

28.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

29.己知sin(θ+α)=sin(θ+β),求证:

30.

五、简答题(5题)31.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

32.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

33.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

34.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。

35.化简

六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

37.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

38.

39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

40.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

参考答案

1.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。

2.A椭圆的标准方程.由题意得,椭圆的焦点在y轴上,且c=l,e=c/a=1/2,故a=2,b=则補圆的标准方程为x2/3+y2/4=1

3.D

4.C

5.B

6.D程序框图的运算.执行如下,a=2,2>0,a=1/2,1/2>0,a=-l,-1<0,退出循环,输出-1。

7.B等差数列的性质.由等差数列的性质得a1+a7=a3+a5,因为a1=2,a3+a5=10,所以a7=8,

8.A平面向量的线性计算.因为a=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).

9.A

10.D垂直于一个平面的两个平面既可能垂直也可能平行还可能相交。

11.-1≤k<3

12.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5

13.5

14.(-7,±2)

15.33

16.1

17.-3,

18.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

19.-1.对数的四则运算.lg5/2+21g2-〔1/2)-1=lg5/2+lg22-2=lg(5/2×4)-2=1-2=-1.

20.4、6、8

21.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

22.

23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

24.

25.

26.

27.

28.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

29.

30.

31.

32.

33.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

34.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴

35.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为

37.

38.

39.

40.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论